1 Introduccion

    La vídeo-colonoscopia (VCC) es el procedimiento de endoscopía digestiva más frecuentemente realizado a nivel mundial. Una VCC está indicada en el cribado de cáncer colorrectal (CCR), vigilancia de distintas preexistencias, abordaje diagnóstico en pacientes sintomáticos y con distintos fines terapéuticos.

    La intubación cecal debe ser una meta durante el procedimiento. Sin embargo, esta puede representar dificultad para el endoscopista, recurriendo progresivamente a técnicas como compresión abdominal, rotación postural, o cambio de endoscopista [4,5]. Esto puede aumentar el tiempo de intubación cecal (>10 minutos) [6], uso de anestesia, dolor abdominal post-VCC, e incluso lesiones inadvertidas [7].
    Hasta momento no existe una definición estandarizada de dificultad técnica de una VCC completa en términos de intubación cecal. Existen escalas como la Difficult Colonoscopy Score (DCS), la cual considera los factores pre-VCC edad, índice de masa corporal (IMC), calidad de sueño, así como la experiencia del endoscopista [8]. No obstante, ninguna de estas herramientas definen objetivamente la dificultad técnica de una VCC.
    El objetivo de este estudio es: describir la frecuencia de técnicas adicionales para lograr la intubación cecal en una muestra grande de pacientes argentinos atendidos en distintos centros, en quienes se realizará VCC, a fin de desarrollar una nueva escala para evaluar la dificultad técnica de la misma.

2 Metodos

    El presente es un estudio multicentrico observacional, analítico, transversal, de recuperación prospectiva [9].
    Se llevo a cabo en pacientes referidos al servicio de Endoscopía del Hospital Nacional Profesor Alejandro Posadas (HNPAP; El Palomar, provincia de Buenos Aires, Argentina), del Instituto de Gastroenterología y Endoscopía de Avanzada (IGEA; Bahía Blanca, provincia de Buenos Aires, Argentina) y del Hospital Universitario Austral (HUA; El Pilar, provincia de Buenos Aires, Argentina), desde julio a diciembre del 2022.
    Se incluyeron pacientes de ambos géneros, mayores de 18 años, con indicación de VCC debido a cribado de CCR, vigilancia de distintas preexistencias, abordaje diagnóstico en pacientes sintomáticos. En aquellos pacientes referidos para VCC con fines terapéuticos, fueron incluidos siempre y cuando haya la indicación clínica de realizar una VCC completa.
    Criterios de exclusión: no se incluyeron aquellos pacientes en quienes se haya realizado una VCC previa en el mismo centro participante en los últimos tres meses; Boston Bowel Preparation Score (BBPS) ≤1 en cualquier segmento colónico (colon ascendente, transverso y/o descendente); cualquier situación que justifique no realizar VCC completa(estenosis colorrectal, diverticulitis, indicación de RSC para valorar CU), o inestabilidad hemodinámica de cualquier tipo, coagulopatia no controlada o fallo renal o hepatico.
    Un grupo de gastroenterologos expertos desarrollo la escala denominada “Argentina Brief Colonoscopy Difficulty”, abreviado como ABCD. Esta cuenta con cuatro dimensiones:

  1. Compresión abdominal o “Abdominal compression”.
  2. Rotación postural o “Body rotation”
  3. Cambio del endoscopista o “Change of endoscopist”
  4. Intubación cecal o “Declined caecal intubation”

    Todos los pacientes se re alizaron una VCC en manos de endoscopistas previamente entrenados, la preparación intestinal se llevo a cabo con diferentes soluciones, según la discreción asistencial del médico tratante. Tras sedación profunda mediante administración intravenosa de propofol, fentanilo y/o midazolam, se realizó VCC asistida por agua [12], empleando un endoscopio de alta definición (high-definition, HD) con luz blanca (white-light, WL).
    Se recopilo información que, están tradicionalmente asociada para con la dificultad de una VCC completa: datos de filiación, edad, sexo, antropometría, historia de cirugías digestivas, hernias/eventraciones, antecedente de VCC incompleta, paciente ambulatorio u hospitalizado, indicación de la VCC, indicación simultánea a una vídeo-endoscopía digestiva alta (VEDA), momento de la jornada en que se realiza la VCC y preparación utilizada.
    Dificultad técnica de VCC completa. Condiciendo con las dimensiones de la escala ABCD, se documentaron los desenlaces técnicos durante la realización de una VCC hasta completarla, o su intento:
1. Necesidad de compresión abdominal.
2. Necesidad de al menos una rotación postural.
3. Número de endoscopistas que participaron hasta la intubación cecal, con su respectiva curva de aprendizaje (competente/junior vs. experto/senior).
4. Necesidad de reiniciar VCC (independientemente del endoscopista responsable); 5. Intubación cecal o deserción tras varios intentos.
    Desenlaces secundarios. Se consideró las siguientes circunstanciales a tomar una vez alcanzada la intubación cecal:
6. Tiempo de entrada: Tiempo (mm:ss) desde la inserción del colonoscopio en el margen anal, hasta la intubación cecal (o su deserción tras varios intentos). No se considerará el tiempo requerido para la toma de biopsia o terapéutico.
7. Consumo de anestésicos: Dosis de propofol (mg), midazolam (mg) y/o fentanilo (g) utilizada durante la VCC, de acuerdo con el registro de anestesia.
8 Dolor post-VCC: Nivel de dolor descrito por el paciente una hora después de la colonoscopia. Un médico general ciego a la dificultad o hallazgos de la VCC le preguntará al paciente sobre el nivel de dolor de 1 (uno) a 10 (diez), mostrando la escala visual análoga (EVA) de calificación de dolor facial de Wong-Baker.
    La información fue recuperada por los distintos centros participantes a través de un formulario prediseñado en la plataforma SurveyMonkey

2.1 Analisis estadistico

    Se considero un valor P<0.05 como estadísticamente significativo. La base de datos será analizada empleando la última versión disponible del programa estadístico R (R Version 4.2.1).
    Estadística descriptiva. Las variables continuas serán descritas en media (desviación estándar, DE) o mediana (rango intercuartil, RIC), según corresponda su distribución estadística (prueba de Kolmógorov-Smirnov, K-S). Las variables discretas (categóricas) serán descritas en porcentajes/frecuencias, con sus respectivos IC de corresponder.
    Estadística inferencial. En base a la puntuación definitiva de ABCD definida al finalizar el estudio, se emplearon operadores booleanos para estimar el nivel de dificultad en cada caso (I, II, III y IV). El nivel de dificultad será contrastado vs. características basales, generales de la VCC y desenlaces secundarios, empleando las pruebas de hipótesis respectivas: prueba Kruskal-Wallis en el caso de variables continuas y chi-cuadrado de Pearson en el caso de variables discretas.
(categóricas). Los datos faltantes se trataron con imputacion multiple. Se utilizo ordinalforest para el proceso de seleccion de variables. Finalmente se contruyo un modelo mixto de regresion ordinal con “intitucion” como variable de efectos aleatorios.

db_total <- read_excel("C:/Users/gabyt/Downloads/CEECS 2021/taller/abcd_survey_monkey.xlsx", 
                       na = "No estimable", col_names = TRUE)

db_total<-db_total[,-c(1:9)]
db_total<-db_total[,-2]
db_total<-db_total[-1,]
list_total <- c("institution",
                "age","gender","height","weight",
                "digestive_surgery","type_digestive_surgery","hernia",
                "prior_incomplete_colonoscopy","ambulatory_hospitalised","indication_colonoscopy",
                "preparation","other_preparation","schedule","veda_vcc_conjunta",
                "time_entrance",
                "manual_pressure_more_than_five_seconds",
                "postural_changes",
                "operators",
                "first_operator_type",
                "second_operator_type",
                "third_operator_type",
                "restart_within_single_operator",
                "another_technique",
                "type_another_technique",
                "ileocecal_junction_visualization",
                "time_outside","bbps_right","bbps_transverse","bbps_left",
                "sedation","consumption_propofol_mg","consumption_fentanyl_ug","consumption_midazolam_ug","other_findings","pain_post_colonoscopy","adverse_events")

colnames(db_total) <- c(list_total)

#write.csv(db_total,"C:/Users/gabyt/Downloads/CEECS 2021/taller/db_total.csv",row.names = F)
db_total$time_entrance <- round(as.difftime(db_total$time_entrance,units = "mins"),digits = 3)
db_total$time_entrance<-as.numeric(db_total$time_entrance)
db_total$indication_colonoscopy<-as.factor(db_total$indication_colonoscopy)
table(db_total$indication_colonoscopy)
## 
## Diagnóstica en un paciente sintomático (ej: dolor abdominal, diarrea, anemia, hematoquezia, proctorragia, etc.) 
##                                                                                                             716 
##                                                                   Screening/cribado de cáncer colorrectal (CCR) 
##                                                                                                             981 
##                                                             Surveillance/seguimiento de cualquier preexistencia 
##                                                                                                             373 
##                                Terapeutica en un paciente programado (pero con intención de llegar hasta ciego) 
##                                                                                                              32
db_total$gender <- ifelse(db_total$gender=="Masculino",0,1)
db_total$gender<-factor(db_total$gender,levels = c(0,1),labels = c("hombre","mujer"))
table(db_total$gender)
## 
## hombre  mujer 
##    960   1137
db_total$digestive_surgery <- ifelse(db_total$digestive_surgery=="No",0,1)
db_total$digestive_surgery<-factor(db_total$digestive_surgery,levels = c(0,1),labels = c("no","si"))
table(db_total$digestive_surgery)
## 
##   no   si 
## 1191  907
db_total$prior_incomplete_colonoscopy <- ifelse(db_total$prior_incomplete_colonoscopy=="No",0,1)
db_total$prior_incomplete_colonoscopy<-factor(db_total$prior_incomplete_colonoscopy,levels = c(0,1),labels = c("no","si"))
table(db_total$prior_incomplete_colonoscopy)
## 
##   no   si 
## 2011   63
db_total$ambulatory_hospitalised <- ifelse(db_total$ambulatory_hospitalised=="Ambulatorio",0,1)
db_total$ambulatory_hospitalised<-factor(db_total$ambulatory_hospitalised,levels = c(0,1),labels = c("ambulatorio","hospitalizado"))
table(db_total$ambulatory_hospitalised)
## 
##   ambulatorio hospitalizado 
##          2073            24
db_total$indication_colonoscopy <- ifelse(db_total$indication_colonoscopy=="Screening/cribado de cáncer colorrectal (CCR)",1,
                                          ifelse(db_total$indication_colonoscopy=="Surveillance/seguimiento de cualquier preexistencia",2,
                                                 ifelse(db_total$indication_colonoscopy=="Diagnóstica en un paciente sintomático (ej: dolor abdominal, diarrea, anemia, hematoquezia, proctorragia, etc.)",3,
                                                               ifelse(db_total$indication_colonoscopy=="Terapeutica en un paciente programado (pero con intención de llegar hasta ciego)",4,NA))))
db_total$indication_colonoscopy<-factor(db_total$indication_colonoscopy, levels = c(1,2,3,4),labels = c("screening ccr","seguimiento","diagnostica","terapeutica programado"))
table(db_total$indication_colonoscopy)
## 
##          screening ccr            seguimiento            diagnostica 
##                    981                    373                    716 
## terapeutica programado 
##                     32
db_total$hernia <- ifelse(db_total$hernia=="No",0,1)
class(db_total$hernia)
## [1] "numeric"
db_total$hernia<-factor(db_total$hernia,levels = c(0,1),labels = c("no", "si"))
table(db_total$hernia)
## 
##   no   si 
## 2026   46
db_total$preparation <- ifelse(db_total$preparation=="Polietilenglicol (Barex)",1,
                               ifelse(db_total$preparation=="Sulfato de sodio (Sulfodom)",2,
                                      ifelse(db_total$preparation=="Fosfato de sodio (Fosfodom)",3,
                                             ifelse(db_total$preparation=="Manitol"|
                                                      db_total$preparation=="Picosulfato de sodio (Novoprep)",4,0))))


db_total$preparation<-factor(db_total$preparation,levels = c(1,2,3,4),
                                        labels = c("barex","sulfodom","fosfodom","otra"))
table(db_total$preparation)
## 
##    barex sulfodom fosfodom     otra 
##     1221      255      266      359
db_total$schedule <- ifelse(db_total$schedule=="Por la mañana (07:00 - 12:00)",0,1)
db_total$schedule<-factor(db_total$schedule,levels = c(0,1),labels = c("mañana","tarde"))

db_total$veda_vcc_conjunta <- ifelse(db_total$veda_vcc_conjunta=="No, va a realizarse solamente VCC.",0,1)
db_total$veda_vcc_conjunta<-factor(db_total$veda_vcc_conjunta,levels = c(0,1),labels = c("no","si"))
table(db_total$veda_vcc_conjunta)
## 
##   no   si 
## 1165  907
db_total$bbps_left <- as.numeric(db_total$bbps_left)
db_total$bbps_transverse <- as.numeric(db_total$bbps_transverse)
db_total$bbps_right <- as.numeric(db_total$bbps_right)
db_total$boston_sum <- db_total$bbps_right + db_total$bbps_transverse + db_total$bbps_left
db_total$boston <- ifelse(db_total$boston_sum>=8 & !is.na(db_total$boston_sum),"Excelente","Bueno")
db_total$boston<-as.factor(db_total$boston)

db_total$first_operator_type <- ifelse(db_total$first_operator_type=="No experto/junior",0,1)
db_total$first_operator_type<-factor(db_total$first_operator_type,levels = c(0,1),labels=c("junior","experto"))
table(db_total$first_operator_type)
## 
##  junior experto 
##     245    1843
db_total$second_operator_type <- ifelse(db_total$second_operator_type=="No experto/junior",0,
                                        ifelse(db_total$second_operator_type=="Experto/senior",1,db_total$second_operator_type))

db_total$second_operator_type<-ifelse(is.na(db_total$second_operator_type),99,db_total$second_operator_type)

db_total$second_operator_type<-factor(db_total$second_operator_type,levels = c(0,1,99),labels=c("junior","experto","no necesario"))
table(db_total$second_operator_type)
## 
##       junior      experto no necesario 
##          102          101         1907
db_total$manual_pressure_more_than_five_seconds <- ifelse(db_total$manual_pressure_more_than_five_seconds=="No",0,
                                                  ifelse(db_total$manual_pressure_more_than_five_seconds=="Sí. Se pudo progresar en menos de 10 segundos.",1,
                                                                 ifelse(db_total$manual_pressure_more_than_five_seconds=="Sí. Se pudo progresar, pero en más de 10 segundos.",2,
                                                                        ifelse(db_total$manual_pressure_more_than_five_seconds=="Sí. Sin embargo, no se logró progresar.",3,NA))))

db_total$manual_pressure_more_than_five_seconds<-factor(db_total$manual_pressure_more_than_five_seconds,levels = c(0,1,2,3),labels = c("no","si<10 seg","si>10","si,pero no se progreso"))
table(db_total$manual_pressure_more_than_five_seconds,useNA = "ifany")
## 
##                     no              si<10 seg                  si>10 
##                    909                    724                    435 
## si,pero no se progreso                   <NA> 
##                     28                     15
db_total$postural_changes <- ifelse(db_total$postural_changes=="No",0,ifelse(db_total$postural_changes=="Sí",1,NA))
db_total$postural_changes<-factor(db_total$postural_changes,levels = c(0,1),labels = c("no","si"))
table(db_total$postural_changes, useNA = "ifany")
## 
##   no   si <NA> 
## 1958  139   14
db_total$operators <- ifelse(db_total$operators=="No",0,1)
db_total$operators<-factor(db_total$operators,levels = c(0,1),labels = c("no","si"))
table(db_total$operators)
## 
##   no   si 
## 1969  103
db_total$restart_within_single_operator <- ifelse(db_total$restart_within_single_operator=="No",0,1)
db_total$restart_within_single_operator<-factor(db_total$restart_within_single_operator,levels=c(0,1),labels=c("no","si"))
db_total$restart_within_single_operator
##    [1] no   no   no   si   no   no   no   no   no   no   no   no   no   si  
##   [15] si   no   no   no   no   no   no   no   no   no   no   no   no   no  
##   [29] no   no   no   no   no   no   no   no   <NA> no   no   no   no   no  
##   [43] no   no   no   no   no   no   no   no   no   no   no   si   no   si  
##   [57] no   si   no   no   no   no   no   <NA> no   no   no   no   no   no  
##   [71] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##   [85] no   no   no   no   no   no   no   no   no   no   no   no   no   <NA>
##   [99] no   no   no   no   no   no   no   no   no   no   si   no   no   si  
##  [113] no   no   no   no   no   no   no   no   no   no   no   no   <NA> no  
##  [127] no   no   no   no   no   no   no   no   no   no   no   no   no   <NA>
##  [141] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [155] no   no   no   no   no   no   no   no   no   no   no   no   no   si  
##  [169] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [183] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [197] no   no   no   no   no   no   no   no   si   no   si   no   no   no  
##  [211] no   no   no   no   no   <NA> no   no   no   no   si   no   no   no  
##  [225] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [239] no   no   no   no   no   no   no   si   no   no   no   no   no   no  
##  [253] no   no   no   no   <NA> no   no   no   no   no   no   no   no   no  
##  [267] no   no   no   no   no   no   no   no   no   si   no   no   no   no  
##  [281] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [295] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [309] no   no   no   no   no   no   no   no   no   no   no   si   no   si  
##  [323] no   no   no   no   no   no   no   si   no   no   no   no   no   no  
##  [337] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [351] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [365] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [379] no   no   no   no   no   si   no   no   no   no   no   no   no   no  
##  [393] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [407] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [421] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [435] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [449] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [463] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [477] no   no   no   no   no   no   no   si   no   no   <NA> si   no   no  
##  [491] no   no   no   no   no   no   si   no   no   no   no   no   no   no  
##  [505] no   no   no   no   no   no   no   no   no   no   si   no   no   no  
##  [519] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [533] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [547] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [561] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [575] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [589] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [603] no   no   si   no   no   no   no   no   no   no   no   no   no   no  
##  [617] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [631] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [645] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [659] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [673] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [687] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [701] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [715] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [729] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [743] no   no   no   no   no   no   no   no   no   si   no   no   no   no  
##  [757] no   no   no   no   no   <NA> no   no   no   no   no   no   no   no  
##  [771] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [785] no   no   no   no   no   no   no   si   no   no   no   no   no   no  
##  [799] no   no   no   no   no   no   si   no   no   no   no   si   no   no  
##  [813] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [827] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [841] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [855] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [869] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [883] no   no   no   no   no   no   no   no   <NA> no   no   no   no   no  
##  [897] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [911] no   no   no   no   no   si   no   si   no   no   no   no   no   no  
##  [925] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [939] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [953] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [967] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [981] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
##  [995] no   no   no   no   no   no   no   no   no   no   no   si   no   no  
## [1009] no   no   no   <NA> no   no   no   no   no   no   no   no   no   no  
## [1023] no   no   no   no   no   no   si   no   no   no   no   no   no   no  
## [1037] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1051] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1065] no   no   no   no   si   no   no   no   no   no   no   no   no   no  
## [1079] no   no   no   no   no   no   no   no   si   no   no   no   si   no  
## [1093] no   no   no   si   no   no   no   no   no   no   no   no   no   no  
## [1107] no   no   no   si   si   no   no   no   no   no   <NA> no   si   no  
## [1121] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1135] no   no   no   no   no   no   no   no   si   no   no   no   no   no  
## [1149] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1163] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1177] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1191] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1205] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1219] no   <NA> no   no   no   no   no   no   no   no   no   no   no   no  
## [1233] no   no   no   no   si   no   si   no   no   no   no   no   no   no  
## [1247] no   no   si   no   no   no   si   no   no   no   no   si   no   no  
## [1261] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1275] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1289] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1303] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1317] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1331] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1345] no   no   no   no   no   no   no   no   no   no   no   no   no   si  
## [1359] no   no   no   no   no   no   <NA> no   no   no   no   no   no   no  
## [1373] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1387] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1401] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1415] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1429] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1443] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1457] no   si   no   no   no   no   no   no   no   no   no   no   no   no  
## [1471] no   no   no   no   no   no   no   no   no   no   si   no   no   no  
## [1485] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1499] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1513] no   no   si   no   no   no   no   no   no   no   no   no   no   no  
## [1527] no   no   no   no   si   no   no   no   no   no   no   si   no   no  
## [1541] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1555] si   no   no   no   no   no   <NA> no   no   no   no   no   no   no  
## [1569] no   si   no   no   no   no   si   no   no   no   no   no   no   no  
## [1583] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1597] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1611] no   no   no   si   no   no   no   no   no   no   si   no   no   si  
## [1625] si   si   no   no   no   no   no   no   no   no   no   si   no   no  
## [1639] no   no   no   no   no   no   si   no   no   no   no   no   no   no  
## [1653] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1667] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1681] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1695] no   no   no   no   no   no   no   si   no   no   no   no   no   no  
## [1709] no   no   no   no   no   no   si   no   no   no   no   no   no   no  
## [1723] no   si   no   no   no   no   no   no   no   no   no   no   no   no  
## [1737] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1751] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1765] no   no   no   no   no   no   <NA> no   no   no   no   no   no   no  
## [1779] no   no   no   no   no   <NA> no   si   si   si   no   si   no   no  
## [1793] no   no   si   no   no   no   no   no   no   no   no   si   no   no  
## [1807] no   no   no   no   no   no   no   <NA> no   no   no   no   si   si  
## [1821] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1835] no   no   no   no   no   <NA> no   no   si   no   no   no   no   no  
## [1849] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1863] no   no   no   no   no   no   no   no   no   no   si   no   si   no  
## [1877] no   no   no   no   no   no   si   <NA> no   no   no   no   no   no  
## [1891] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1905] no   no   no   no   no   no   no   si   no   no   no   no   no   si  
## [1919] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1933] si   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1947] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1961] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1975] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [1989] no   no   no   no   no   no   no   si   no   no   no   no   no   no  
## [2003] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [2017] no   si   si   si   <NA> no   no   no   no   no   si   no   no   no  
## [2031] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [2045] no   no   no   si   no   no   si   si   no   no   no   no   no   no  
## [2059] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [2073] no   no   no   no   no   no   no   no   no   no   no   no   no   no  
## [2087] no   si   si   no   si   no   no   no   no   no   no   si   no   no  
## [2101] no   no   no   no   no   no   si   no   no   no   <NA>
## Levels: no si
db_total$ileocecal_junction_visualization <- ifelse(db_total$ileocecal_junction_visualization=="No",0,1)

db_total$ileocecal_junction_visualization<-factor(db_total$ileocecal_junction_visualization,levels=c(0,1),labels=c("no","si"))
db_total$ileocecal_junction_visualization
##    [1] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##   [15] si   si   si   si   si   si   si   si   si   si   si   si   si   no  
##   [29] si   si   <NA> si   si   no   si   si   <NA> si   si   si   si   si  
##   [43] si   si   si   si   si   si   si   si   si   si   si   si   si   no  
##   [57] si   no   si   si   si   si   si   si   si   si   si   si   si   si  
##   [71] no   si   si   si   no   si   si   si   si   si   si   si   no   si  
##   [85] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##   [99] si   si   si   si   si   si   si   si   si   si   no   si   si   no  
##  [113] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [127] si   si   si   si   <NA> si   si   si   si   si   si   si   si   si  
##  [141] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [155] si   si   no   si   si   si   si   si   si   si   si   si   si   si  
##  [169] si   si   si   si   si   si   no   si   si   si   si   si   si   si  
##  [183] si   si   si   si   si   si   no   si   si   si   si   si   si   si  
##  [197] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [211] si   si   si   si   si   no   si   si   si   si   si   si   si   si  
##  [225] si   si   si   si   si   no   si   si   si   si   si   si   si   si  
##  [239] si   si   <NA> si   si   si   si   si   si   si   si   si   si   si  
##  [253] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [267] si   si   no   si   si   si   si   si   si   si   si   si   si   si  
##  [281] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [295] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [309] si   no   si   si   si   si   si   si   si   si   si   si   si   si  
##  [323] si   si   si   si   si   si   si   no   si   si   si   si   si   si  
##  [337] si   si   si   si   si   si   si   si   si   si   no   si   si   si  
##  [351] si   si   no   si   si   si   si   si   si   si   si   si   si   si  
##  [365] si   si   si   si   no   no   si   si   si   si   si   si   no   <NA>
##  [379] no   no   si   si   si   si   si   si   si   no   si   si   si   no  
##  [393] si   si   si   si   si   no   si   si   si   no   si   si   si   si  
##  [407] si   no   si   si   si   si   si   si   si   si   si   si   si   si  
##  [421] si   si   si   si   si   <NA> si   si   si   si   si   si   si   no  
##  [435] si   si   si   si   si   si   si   si   si   si   no   si   si   si  
##  [449] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [463] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [477] si   si   si   si   si   si   si   si   si   si   si   no   si   si  
##  [491] si   no   si   no   si   si   si   si   si   si   si   si   si   si  
##  [505] si   si   si   si   si   si   si   si   si   si   no   si   si   si  
##  [519] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [533] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [547] si   si   si   si   si   si   si   si   si   no   si   si   si   si  
##  [561] si   si   si   si   no   si   si   si   si   si   si   si   si   si  
##  [575] si   si   si   si   si   si   si   si   si   si   si   si   no   si  
##  [589] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [603] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [617] si   si   si   si   si   si   si   si   si   si   si   <NA> si   si  
##  [631] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [645] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [659] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [673] <NA> si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [687] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [701] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [715] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [729] si   si   si   si   si   si   si   si   si   si   no   si   si   si  
##  [743] si   si   si   si   si   si   si   si   si   no   si   si   si   si  
##  [757] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [771] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [785] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [799] si   si   si   si   si   si   no   si   si   si   si   si   si   si  
##  [813] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [827] si   si   si   si   si   si   si   si   no   si   si   si   si   si  
##  [841] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [855] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [869] si   no   no   si   si   si   si   si   si   si   si   si   si   si  
##  [883] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [897] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [911] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [925] si   si   si   si   si   si   si   si   si   si   si   si   <NA> si  
##  [939] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [953] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [967] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
##  [981] si   si   si   si   no   si   no   si   si   si   si   si   si   si  
##  [995] si   si   si   si   si   no   si   si   si   si   si   si   si   si  
## [1009] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1023] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1037] si   si   si   si   si   si   no   si   si   si   si   si   si   si  
## [1051] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1065] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1079] si   si   si   no   si   si   si   si   si   si   si   si   si   si  
## [1093] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1107] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1121] no   si   si   si   si   si   si   si   si   si   no   si   si   si  
## [1135] si   si   no   si   si   si   si   si   si   si   si   si   si   si  
## [1149] si   <NA> si   si   si   si   si   si   si   si   si   si   si   si  
## [1163] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1177] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1191] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1205] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1219] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1233] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1247] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1261] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1275] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1289] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1303] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1317] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1331] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1345] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1359] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1373] si   si   si   si   no   si   si   si   si   si   si   si   si   si  
## [1387] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1401] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1415] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1429] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1443] si   si   si   si   si   si   no   si   si   si   si   si   si   si  
## [1457] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1471] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1485] si   si   si   si   si   si   si   si   si   si   si   si   si   no  
## [1499] no   si   si   si   si   si   si   si   si   si   si   si   no   si  
## [1513] si   si   no   si   no   <NA> si   si   si   si   si   si   no   si  
## [1527] si   si   si   si   si   si   si   si   si   si   si   si   <NA> si  
## [1541] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1555] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1569] si   si   si   si   no   si   si   si   si   si   si   no   si   si  
## [1583] si   si   si   si   no   si   si   si   si   no   si   si   si   si  
## [1597] si   si   si   si   si   si   si   si   si   si   si   si   <NA> si  
## [1611] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1625] si   no   si   si   no   si   si   si   no   si   si   si   si   si  
## [1639] no   si   no   si   si   si   si   si   si   si   si   si   si   si  
## [1653] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1667] si   <NA> si   si   no   si   si   no   si   si   si   si   si   si  
## [1681] si   si   si   si   si   si   si   si   si   no   no   si   si   si  
## [1695] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1709] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1723] si   si   si   si   si   si   no   si   si   si   si   si   si   si  
## [1737] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1751] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1765] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1779] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1793] si   si   si   si   si   si   si   si   si   si   si   si   si   no  
## [1807] no   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1821] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1835] si   si   si   si   si   si   si   si   si   si   no   si   si   si  
## [1849] si   si   si   si   si   si   si   si   <NA> si   si   si   si   si  
## [1863] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1877] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1891] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1905] si   si   si   si   si   no   si   no   si   si   si   si   no   si  
## [1919] no   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1933] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1947] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1961] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [1975] si   si   no   si   si   si   si   si   si   si   si   si   si   si  
## [1989] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [2003] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [2017] no   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [2031] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [2045] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [2059] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [2073] si   si   si   si   si   si   si   si   si   si   si   si   si   si  
## [2087] si   no   si   si   si   si   si   si   si   si   si   si   si   no  
## [2101] si   si   no   si   si   si   si   si   si   si   <NA>
## Levels: no si
db_total$age <- as.numeric(db_total$age)
db_total$age_cat <- cut(db_total$age,
                  breaks=c(17,39,64,Inf),
                  labels=c("17-39 años",
                           "40-64 años",
                           ">65 años"))

table(db_total$age_cat)
## 
## 17-39 años 40-64 años   >65 años 
##        184       1202        723
db_total$height <- as.numeric(db_total$height)
db_total$weight <- as.numeric(db_total$weight)
db_total$bmi <- db_total$weight/((db_total$height/100)*(db_total$height/100))
db_total$bmi_cat <- cut(db_total$bmi,
                  breaks=c(0,19.99,24.99,29.99,34.99,Inf),
                  labels=c("Underweight (<20)",
                           "Normal weight (20-24.9)",
                           "Obese (25-29.9)",
                           "Overweight I (30-34.99)",
                           "Overweright II/III (>35)"))
db_total$pain <- ifelse(db_total$pain_post_colonoscopy>7 & !is.na(db_total$pain_post_colonoscopy),"8-10",
                  ifelse(db_total$pain_post_colonoscopy>2 & !is.na(db_total$pain_post_colonoscopy),"3-7","0-2"))

db_total$pain<-factor(db_total$pain, levels = c("0-2","3-7","8-10"),labels =c("leve","moderado","severo"))

table(db_total$pain)
## 
##     leve moderado   severo 
##     1896      210        5
db_total$score <- ifelse(db_total$ileocecal_junction_visualization=="no",5,
                    ifelse(db_total$operators=="si"
                           |db_total$restart_within_single_operator=="si"
                           |db_total$manual_pressure_more_than_five_seconds=="si,pero no se progreso"
                           |db_total$postural_changes=="si",4, 
                           ifelse(db_total$manual_pressure_more_than_five_seconds=="si>10",3, 
                                  ifelse(db_total$manual_pressure_more_than_five_seconds=="si<10 seg",2,1))))


db_total$score<-as.factor(db_total$score)
db_total$score<-as.ordered(db_total$score)

#SCORE

freq(db_total$score, plot = T)#asimetria izquierda

## db_total$score 
##       Frequency Percent Valid Percent Cum Percent
## 1           799  37.849        39.398       39.40
## 2           600  28.423        29.586       68.98
## 3           295  13.974        14.546       83.53
## 4           248  11.748        12.229       95.76
## 5            86   4.074         4.241      100.00
## NA's         83   3.932                          
## Total      2111 100.000       100.000
#INSTITUCION:

db_total$institution <- str_trim(str_split(db_total$institution, "-", simplify = TRUE)[,1], side="both")

db_total$institution <- str_remove(db_total$institution, ". Dr. Manzotti Leandro")

instituciones <- str_split(db_total$institution, " ", simplify = TRUE)
 
instituciones2 <- instituciones[2111,]
instituciones <- instituciones[,(2:9)]
for (i in 1:2111){
  instituciones2[i] <- str_trim(paste(instituciones[i,], collapse = " "), side="both")
}


db_total$institution<- instituciones2

db_total$institution<-as.factor(db_total$institution)

table(db_total$institution,useNA = "ifany")
## 
##                                                                             
##                                                                          18 
##                                               Centro de Estudios Digestivos 
##                                                                          37 
##                                                             Clínica de Cuyo 
##                                                                         101 
##                                                          Clínica San Miguel 
##                                                                         124 
##                                                          Grupo Mit Santa Fe 
##                                                                         308 
##                                                Hospital Italiano de Mendoza 
##                                                                          47 
##                        Hospital Nacional Profesor Alejandro Posadas (HNPAP) 
##                                                                          42 
##                                   Hospital Regional R Carrillo S del Estero 
##                                                                          12 
##                                                Hospital Regional Río Grande 
##                                                                           4 
##                                                                        IGEA 
##                                                                         494 
##                                  Instituto Modelo de Cardiología de Córdoba 
##                                                                         451 
##                            Instituto Modelo de Gastroenterologia de Formosa 
##                                                                         150 
## Instituto Norpatagónico de Gastroenterología y Endoscopía Digestiva (INGED) 
##                                                                         112 
##                                      Instituto Otorrinolaringológico Tandil 
##                                                                          12 
##                                                           Sanatorio Allende 
##                                                                         199
db_total$consumption_propofol_mg<-as.numeric(db_total$consumption_propofol_mg)
#Distribucion de las variables

#EDAD:
hist(db_total$age)

shapiro.test(db_total$age)
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$age
## W = 0.99018, p-value = 8.839e-11
#por grupo:

hist(db_total$age[db_total$score=="1"])

hist(db_total$age[db_total$score=="2"])

hist(db_total$age[db_total$score=="3"])

hist(db_total$age[db_total$score=="4"])

hist(db_total$age[db_total$score=="5"])

shapiro.test(db_total$age[db_total$score=="1"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$age[db_total$score == "1"]
## W = 0.99189, p-value = 0.0002323
shapiro.test(db_total$age[db_total$score=="2"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$age[db_total$score == "2"]
## W = 0.98954, p-value = 0.000283
shapiro.test(db_total$age[db_total$score=="3"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$age[db_total$score == "3"]
## W = 0.98128, p-value = 0.0006638
shapiro.test(db_total$age[db_total$score=="4"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$age[db_total$score == "4"]
## W = 0.97824, p-value = 0.0007457
shapiro.test(db_total$age[db_total$score=="5"])#solo este cumple normalidad
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$age[db_total$score == "5"]
## W = 0.98095, p-value = 0.2354
ggplot(data = db_total, mapping = aes(x=score, y=age))+
  geom_boxplot(mapping = aes(fill=score))+
  geom_jitter(size=2, position = position_jitter(width = 0.05))#distribucion similar-->Kruskal

#SEXO

tabla_sexo=tableby(score~notest(gender), data = db_total)
summary(tabla_sexo, text=T)
## 
## 
## |          |  1 (N=799)  |  2 (N=600)  |  3 (N=295)  |  4 (N=248)  |  5 (N=86)  | Total (N=2028) | p value|
## |:---------|:-----------:|:-----------:|:-----------:|:-----------:|:----------:|:--------------:|-------:|
## |gender    |             |             |             |             |            |                |        |
## |-  N-Miss |      3      |      7      |      1      |      2      |     0      |       13       |        |
## |-  hombre | 443 (55.7%) | 260 (43.8%) | 95 (32.3%)  | 86 (35.0%)  | 34 (39.5%) |  918 (45.6%)   |        |
## |-  mujer  | 353 (44.3%) | 333 (56.2%) | 199 (67.7%) | 160 (65.0%) | 52 (60.5%) |  1097 (54.4%)  |        |
sexo=chisq.test(db_total$gender,db_total$score, correct = T)

sexo$expected #cumple
##                db_total$score
## db_total$gender        1        2        3        4        5
##          hombre 362.6442 270.1608 133.9414 112.0734 39.18015
##          mujer  433.3558 322.8392 160.0586 133.9266 46.81985
#BMI

hist(db_total$bmi)

hist(db_total$bmi[db_total$score=="1"])

hist(db_total$bmi[db_total$score=="2"])

hist(db_total$bmi[db_total$score=="3"])

hist(db_total$bmi[db_total$score=="4"])

hist(db_total$bmi[db_total$score=="5"])

shapiro.test(db_total$bmi[db_total$score=="1"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$bmi[db_total$score == "1"]
## W = 0.96219, p-value = 1.706e-13
shapiro.test(db_total$bmi[db_total$score=="2"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$bmi[db_total$score == "2"]
## W = 0.93244, p-value = 8.3e-16
shapiro.test(db_total$bmi[db_total$score=="3"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$bmi[db_total$score == "3"]
## W = 0.96885, p-value = 5.511e-06
shapiro.test(db_total$bmi[db_total$score=="4"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$bmi[db_total$score == "4"]
## W = 0.9034, p-value = 1.754e-11
shapiro.test(db_total$bmi[db_total$score=="5"]) #NO SE CUMPLE NORMALIDAD
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$bmi[db_total$score == "5"]
## W = 0.89072, p-value = 2.51e-06
ggplot(data = db_total, mapping = aes(x=score, y=bmi))+
  geom_boxplot(mapping = aes(fill=score))+
  geom_jitter(size=2, position = position_jitter(width = 0.05))#similar--->Kruskal

# #Propofol

class(db_total$consumption_midazolam_ug)
## [1] "character"
db_total$consumption_propofol_mg<-as.numeric(db_total$consumption_propofol_mg)
hist(db_total$consumption_propofol_mg)

hist(db_total$consumption_propofol_mg[db_total$score=="1"])

hist(db_total$consumption_propofol_mg[db_total$score=="2"])

hist(db_total$consumption_propofol_mg[db_total$score=="3"])

hist(db_total$consumption_propofol_mg[db_total$score=="4"])

hist(db_total$consumption_propofol_mg[db_total$score=="5"])

shapiro.test(db_total$consumption_propofol_mg[db_total$score=="1"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$consumption_propofol_mg[db_total$score == "1"]
## W = 0.89526, p-value < 2.2e-16
shapiro.test(db_total$consumption_propofol_mg[db_total$score=="2"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$consumption_propofol_mg[db_total$score == "2"]
## W = 0.89491, p-value < 2.2e-16
shapiro.test(db_total$consumption_propofol_mg[db_total$score=="3"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$consumption_propofol_mg[db_total$score == "3"]
## W = 0.91061, p-value = 4.086e-12
shapiro.test(db_total$consumption_propofol_mg[db_total$score=="4"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$consumption_propofol_mg[db_total$score == "4"]
## W = 0.90126, p-value = 1.161e-11
shapiro.test(db_total$consumption_propofol_mg[db_total$score=="5"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$consumption_propofol_mg[db_total$score == "5"]
## W = 0.90767, p-value = 1.375e-05
#no cumple normalidad

ggplot(data= db_total, mapping = aes(x=score, y=consumption_propofol_mg))+
geom_boxplot(mapping = aes(fill=score))+
geom_jitter(size=2, position = position_jitter(width = 0.05)) #las distribuciones son similares--->KRUSKAL

#DOLOR categ

ggplot(data= db_total, mapping = aes(x=score, y=pain))+
geom_boxplot(mapping = aes(fill=score))+geom_jitter(size=2, position = position_jitter(width = 0.05))

chi_dolor<-chisq.test(db_total$pain, db_total$score)
chi_dolor$expected# NO CUMPLE, mejor trend Cochran o mediana para dolor sin categorizar
##              db_total$score
## db_total$pain          1         2           3           4          5
##      leve     716.263314 537.86982 264.4526627 222.3195266 77.0946746
##      moderado  80.766765  60.65089  29.8200197  25.0690335  8.6932939
##      severo     1.969921   1.47929   0.7273176   0.6114398  0.2120316
class(db_total$score)
## [1] "ordered" "factor"
dolor_score<-table(db_total$pain, db_total$score)

trend<-prop_trend_test(dolor_score)

mood.medtest(db_total$score,db_total$pain_post_colonoscopy,exact = F)
## 
##  Mood's median test
## 
## data:  db_total$score by structure(c(1L, 1L, 1L, 1L, NA, 9L, 8L, NA, NA, NA, 1L, NA, NA, db_total$score by 1L, 1L, 1L, 4L, 1L, 6L, 2L, 1L, 1L, 3L, 1L, 1L, 2L, 1L, 3L, NA, db_total$score by 1L, 1L, 1L, 2L, NA, 1L, 2L, 2L, 2L, 1L, NA, NA, 2L, NA, NA, NA, db_total$score by NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 3L, 1L, NA, 2L, 1L, 1L, db_total$score by 1L, 1L, 1L, 3L, 2L, 1L, NA, 1L, 2L, NA, NA, NA, 1L, 1L, 2L, 1L, db_total$score by NA, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, NA, 1L, 1L, 1L, 1L, 2L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 1L, db_total$score by 2L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by NA, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 3L, 1L, 2L, NA, 4L, db_total$score by 1L, 4L, 3L, 4L, 1L, 2L, 1L, 3L, 3L, 3L, 2L, 1L, 1L, NA, 2L, 2L, db_total$score by 3L, 2L, NA, NA, 3L, 4L, 4L, 4L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 2L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 2L, NA, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 2L, db_total$score by NA, 1L, 1L, 3L, 1L, 1L, 1L, NA, 1L, NA, 1L, 1L, 1L, 2L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 1L, 3L, db_total$score by 3L, 3L, NA, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 2L, 3L, 4L, db_total$score by 1L, 1L, 2L, 4L, 2L, 2L, 4L, NA, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 2L, NA, 4L, 2L, 3L, 2L, 3L, 1L, 2L, 3L, 2L, 1L, 2L, 3L, 3L, db_total$score by 3L, 5L, 2L, 2L, 7L, 2L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 7L, 1L, 1L, 1L, 1L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, db_total$score by 1L, 2L, 1L, 1L, 1L, 1L, 4L, 4L, 1L, 4L, 1L, NA, 1L, NA, 1L, 1L, db_total$score by 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, NA, 1L, 2L, NA, 1L, 1L, db_total$score by 1L, NA, 1L, 1L, 1L, 1L, 2L, 2L, 3L, 2L, 1L, 2L, 3L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 3L, 1L, 2L, 3L, db_total$score by 2L, 3L, 3L, 2L, 2L, 2L, 3L, 1L, 3L, 2L, 2L, 1L, 8L, 1L, 1L, 2L, db_total$score by NA, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, NA, 3L, 2L, 2L, 3L, 3L, 1L, 4L, 4L, NA, 3L, 1L, 2L, 1L, 1L, db_total$score by 1L, 1L, 1L, NA, 1L, NA, 1L, 1L, NA, 1L, 1L, NA, 1L, 1L, 2L, 4L, db_total$score by 2L, 1L, 3L, 2L, 1L, 2L, 1L, NA, NA, 5L, 4L, 2L, NA, 1L, NA, 3L, db_total$score by 3L, 1L, 3L, 3L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 3L, 3L, 1L, 1L, 2L, 1L, db_total$score by 1L, 1L, 6L, NA, 3L, 5L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, NA, 1L, 2L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, NA, 1L, 1L, 1L, 1L, NA, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, NA, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 3L, NA, 3L, NA, NA, NA, NA, NA, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, db_total$score by 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, NA, NA, NA, db_total$score by 2L, 1L, 1L, 1L, 1L, 1L, NA, 2L, 5L, 2L, 1L, 2L, NA, 1L, 1L, 2L, db_total$score by 2L, 2L, NA, 1L, 1L, NA, 3L, NA, 1L, 2L, 1L, 2L, 4L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 4L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, 7L, 3L, db_total$score by NA, NA, NA, NA, NA, 3L, NA, NA, 2L, 1L, 4L, 1L, 1L, 1L, 1L, NA, db_total$score by 1L, 1L, 1L, 1L, 1L, NA, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, NA, 1L, 1L, 1L, 1L, 1L, NA, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 9L, 1L, 1L, NA, 1L, db_total$score by 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, NA, NA, NA, 2L, NA, 1L, 9L, 1L, NA, NA, NA, db_total$score by 1L, NA, 1L, NA, 1L, 1L, NA, NA, NA, 2L, 1L, 1L, NA, 1L, 1L, 1L, db_total$score by 2L, 1L, 3L, 1L, 4L, NA, 3L, 4L, 4L, 3L, 3L, 4L, 2L, 3L, 1L, 2L, db_total$score by 1L, 1L, 1L, NA, 1L, NA, 1L, 1L, NA, NA, NA, NA, NA, 1L, NA, 1L, db_total$score by 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 2L, 7L, 1L, 2L, NA, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 1L, 3L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, NA, NA, NA, NA, NA, NA, 1L, NA, 1L, 1L, NA, 1L, 1L, db_total$score by 2L, 1L, 1L, 1L, 1L, 2L, NA, 1L, NA, 2L, NA, 1L, 4L, 3L, 1L, 1L, db_total$score by 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 4L, 1L, NA, 1L, db_total$score by 1L, NA, 1L, 1L, 1L, NA, 2L, NA, 1L, NA, NA, NA, NA, NA, NA, 1L, db_total$score by NA, 3L, NA, 2L, 4L, 3L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, NA, db_total$score by 3L, 1L, 3L, 1L, 2L, 2L, 4L, 4L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 2L, NA, NA, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, NA, NA, NA, NA, 3L, NA, NA, NA, NA, NA, NA, 1L, db_total$score by NA, NA, NA, NA, NA, NA, 1L, NA, NA, NA, NA, NA, NA, NA, NA, NA, db_total$score by NA, NA, NA, 1L, NA, 1L, 3L, 3L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, NA, db_total$score by 4L, NA, 1L, 1L, 1L, 1L, 1L, 2L, NA, 1L, 1L, 2L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, NA, NA, NA, 1L, NA, 3L, db_total$score by NA, 3L, NA, NA, 1L, NA, NA, 2L, 2L, NA, 1L, NA, 2L, 1L, 1L, NA, db_total$score by 2L, NA, 1L, NA, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by NA, 1L, 2L, 1L, 2L, NA, NA, NA, 1L, 1L, NA, 1L, 2L, 1L, 1L, NA, db_total$score by NA, 2L, NA, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, NA, 1L, db_total$score by 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, db_total$score by NA, 2L, 1L, NA, NA, NA, 1L, NA, NA, 1L, 1L, NA, NA, 1L, 1L, 2L, db_total$score by NA, 1L, NA, 2L, NA, NA, 1L, NA, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 6L, db_total$score by 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, db_total$score by NA, NA, 1L, 1L, 1L, 3L, 1L, 1L, NA, NA, 1L, 1L, 1L, NA, NA, 4L, db_total$score by 1L, 1L, NA, 1L, NA, 1L, 1L, 1L, 1L, NA, 1L, NA, 1L, 1L, 1L, 1L, db_total$score by NA, NA, 1L, NA, 1L, 1L, 1L, NA, NA, NA, 3L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, db_total$score by 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, NA, 1L, 1L, 3L, db_total$score by 1L, 1L, 1L, 1L, 4L, 1L, 2L, 1L, 6L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 1L, 1L, 1L, 4L, 1L, 3L, 1L, 2L, NA, 1L, NA, NA, 1L, NA, db_total$score by NA, NA, 1L, 1L, NA, 2L, NA, 1L, 3L, 2L, 2L, 2L, NA, 1L, NA, NA, db_total$score by NA, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 1L, NA, 1L, db_total$score by 1L, NA, NA, 1L, NA, NA, NA, NA, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, NA, 1L, 2L, 1L, NA, NA, NA, NA, 1L, 1L, NA, 1L, 1L, 1L, NA, db_total$score by 1L, 3L, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, NA, db_total$score by NA, NA, 1L, NA, NA, NA, 1L, NA, NA, NA, NA, 2L, NA, 2L, 3L, 3L, db_total$score by 1L, 3L, 2L, 3L, 7L, 3L, 4L, 3L, 3L, 3L, 5L, 1L, 3L, NA, 2L, 1L, db_total$score by NA, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, NA, 1L, 1L, 1L, 1L, 1L, 1L, db_total$score by 1L, NA, NA, NA, NA, 2L, 2L, 1L, NA, NA, NA, 1L, 1L, 6L, 1L, 1L, db_total$score by 4L, 2L, 1L, NA, NA, NA, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, NA, 1L, db_total$score by 1L, 1L, 1L, 1L, NA, 2L, NA, 1L, 1L, 1L, NA, 1L, NA, 1L, 1L, NA, db_total$score by NA, NA, NA, NA, NA, 1L, 1L, NA, 1L, 1L, 2L, NA, 3L, 3L, 2L, 3L, db_total$score by 5L, 3L, 2L, 3L, 2L, 4L, 3L, 4L, 4L, 2L, 4L, 3L, 2L, 2L, 3L, 2L, db_total$score by 2L, 3L, 2L, 3L, 2L, 2L, 7L, 4L, 3L, 2L, 5L, 5L, 1L, 3L, 4L, 1L, db_total$score by 2L, 3L, 3L, NA, NA, NA, 1L, 1L, NA, 2L, NA, NA, NA, 4L, 2L, 3L, db_total$score by 1L, NA, 2L, 3L, NA, 5L, 3L, 2L, 4L, 2L, 3L, 1L, 1L, 1L, 1L, 1L, db_total$score by 5L, 1L, NA, 1L, NA, NA, NA, 2L, 1L, 1L, 3L, 3L, 1L, 1L, 1L, 1L, db_total$score by 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, 1L, 6L, 1L, 2L, 2L, db_total$score by 1L, 3L, 1L, 3L, 1L, 1L, 6L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, NA, 3L, db_total$score by 4L, 2L, 4L, 5L, 4L, 3L, NA, 1L, 4L, 5L, 1L, NA, NA, NA, NA, NA, db_total$score by 1L, NA), levels = c("1", "2", "3", "4", "5", "6", "7", "8", "9"db_total$score by ), class = "factor")
## X-squared = 143.24, df = 8, p-value < 2.2e-16
#BMI_CATEGORICO
class(db_total$bmi_cat)
## [1] "factor"
chi_bmi<-chisq.test(db_total$bmi_cat,db_total$score)
chi_bmi$expected
##                           db_total$score
## db_total$bmi_cat                   1         2         3         4         5
##   Underweight (<20)         33.13495  24.87197  12.20761  10.21453  3.570934
##   Normal weight (20-24.9)  232.33910 174.39990  85.59862  71.62333 25.039051
##   Obese (25-29.9)          339.23875 254.64162 124.98270 104.57736 36.559565
##   Overweight I (30-34.99)  140.82353 105.70588  51.88235  43.41176 15.176471
##   Overweright II/III (>35)  52.46367  39.38062  19.32872  16.17301  5.653979
#CIRUGIA DIGESTIVA PREVIA
chi_cx<-chisq.test(db_total$digestive_surgery, db_total$score)
chi_cx$expected
##                           db_total$score
## db_total$digestive_surgery        1        2        3       4        5
##                         no 448.9345 336.1369 163.5565 139.869 48.50298
##                         si 347.0655 259.8631 126.4435 108.131 37.49702
#AMBULATORIO- HSPITALIZADO
chi_lugar<-chisq.test(db_total$ambulatory_hospitalised, db_total$score)
chi_lugar$expected#NO CUMPLE, ver fisher?
##                db_total$score
##                         1          2          3          4          5
##   ambulatorio   787.90273 587.219851 287.678412 244.180645 85.0183623
##   hospitalizado   9.09727   6.780149   3.321588   2.819355  0.9816377
#INDICACION
chi_indicacion<-chisq.test(db_total$indication_colonoscopy, db_total$score)
chi_indicacion$expected
##                         db_total$score
##                                  1          2          3          4         5
##   screening ccr          373.74184 280.072206 137.226014 115.681998 40.277943
##   seguimiento            140.49852 105.285856  51.586548  43.487636 15.141444
##   diagnostica            271.13056 203.178042  99.550445  83.921365 29.219585
##   terapeutica programado  12.62908   9.463897   4.636993   3.909001  1.361029
#PREPARACION
chi_preparacion<-chisq.test(db_total$preparation, db_total$score)
chi_preparacion$expected
##                     db_total$score
## db_total$preparation         1         2         3         4        5
##             barex    465.35626 350.62692 172.67937 144.58238 49.75507
##             sulfodom  94.80208  71.42949  35.17813  29.45423 10.13607
##             fosfodom 100.30925  75.57892  37.22167  31.16526 10.72489
##             otra     134.53241 101.36467  49.92083  41.79812 14.38397
#MOMENTO DEL DIA DE REALIZACION DE LA VCC
chi_momento<-chisq.test(db_total$schedule, db_total$score)
chi_momento$expected
##                  db_total$score
## db_total$schedule        1        2         3        4        5
##            mañana 524.1845 388.3581 192.53067 162.2005 54.72618
##            tarde  270.8155 200.6419  99.46933  83.7995 28.27382
#BOSTON
chi_boston<-chisq.test(db_total$boston, db_total$score)
chi_boston$expected#cumple
##                db_total$score
## db_total$boston        1        2        3        4        5
##       Bueno     341.5843 256.5089 126.1169 106.0237 36.76627
##       Excelente 457.4157 343.4911 168.8831 141.9763 49.23373
ggplot(db_total, aes(boston))+
  geom_bar(aes(fill=score))

tabla_boston=tableby(score~notest(boston), data = db_total)
summary(tabla_boston, text=T)
## 
## 
## |             |  1 (N=799)  |  2 (N=600)  |  3 (N=295)  |  4 (N=248)  |  5 (N=86)  | Total (N=2028) | p value|
## |:------------|:-----------:|:-----------:|:-----------:|:-----------:|:----------:|:--------------:|-------:|
## |boston       |             |             |             |             |            |                |        |
## |-  Bueno     | 244 (30.5%) | 281 (46.8%) | 136 (46.1%) | 137 (55.2%) | 69 (80.2%) |  867 (42.8%)   |        |
## |-  Excelente | 555 (69.5%) | 319 (53.2%) | 159 (53.9%) | 111 (44.8%) | 17 (19.8%) |  1161 (57.2%)  |        |
#ENDOSCOPIA PREVIA INCOMPLETA

ggplot(db_total, aes(prior_incomplete_colonoscopy))+
  geom_bar(aes(fill=score))

chi_vedaprevia<-chisq.test(db_total$prior_incomplete_colonoscopy, db_total$score)
chi_vedaprevia$expected#no cumple, fisher
##     db_total$score
##             1         2         3          4         5
##   no 765.8688 570.03906 278.23335 239.455183 82.403605
##   si  24.1312  17.96094   8.76665   7.544817  2.596395
#ILEOCECAL VISUALIZATION

chi_visualizacion<-chisq.test(db_total$ileocecal_junction_visualization,db_total$score)
chi_visualizacion$expected
##     db_total$score
##              1         2         3         4         5
##   no  33.88264  25.44379  12.50986  10.51677  3.646943
##   si 765.11736 574.55621 282.49014 237.48323 82.353057
ggplot(db_total, aes(ileocecal_junction_visualization))+
  geom_bar(aes(fill=score))

#CAMBIOS POSTURALES
chi_post<-chisq.test(db_total$postural_changes,db_total$score)
chi_post$expected
##                          db_total$score
## db_total$postural_changes         1         2         3         4         5
##                        no 744.23619 558.87574 274.78057 231.00197 80.105523
##                        si  54.76381  41.12426  20.21943  16.99803  5.894477
#time entrance

hist(db_total$time_entrance[db_total$score=="1"])

hist(db_total$time_entrance[db_total$score=="2"])

hist(db_total$time_entrance[db_total$score=="3"])

hist(db_total$time_entrance[db_total$score=="4"])

hist(db_total$time_entrance[db_total$score=="5"])

shapiro.test(db_total$time_entrance[db_total$score=="1"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$time_entrance[db_total$score == "1"]
## W = 0.75133, p-value < 2.2e-16
shapiro.test(db_total$time_entrance[db_total$score=="2"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$time_entrance[db_total$score == "2"]
## W = 0.80613, p-value < 2.2e-16
shapiro.test(db_total$time_entrance[db_total$score=="3"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$time_entrance[db_total$score == "3"]
## W = 0.8633, p-value = 1.981e-15
shapiro.test(db_total$time_entrance[db_total$score=="4"])
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$time_entrance[db_total$score == "4"]
## W = 0.83781, p-value = 2.676e-15
shapiro.test(db_total$time_entrance[db_total$score=="5"])#no cumple normalidad
## 
##  Shapiro-Wilk normality test
## 
## data:  db_total$time_entrance[db_total$score == "5"]
## W = 0.75922, p-value = 1.731e-10
ggplot(data = db_total, mapping = aes(x=score, y=time_entrance))+
  geom_boxplot(mapping = aes(fill=score))+
  geom_jitter(size=2, position = position_jitter(width = 0.05))#similar distribucion

#institucion:

ggplot(db_total, aes(institution))+
  geom_bar(aes(fill=score))

table(db_total$institution,db_total$score)
##                                                                              
##                                                                                 1
##                                                                                 1
##   Centro de Estudios Digestivos                                                26
##   Clínica de Cuyo                                                              75
##   Clínica San Miguel                                                           52
##   Grupo Mit Santa Fe                                                           54
##   Hospital Italiano de Mendoza                                                 20
##   Hospital Nacional Profesor Alejandro Posadas (HNPAP)                         10
##   Hospital Regional R Carrillo S del Estero                                     6
##   Hospital Regional Río Grande                                                  3
##   IGEA                                                                         75
##   Instituto Modelo de Cardiología de Córdoba                                  278
##   Instituto Modelo de Gastroenterologia de Formosa                             65
##   Instituto Norpatagónico de Gastroenterología y Endoscopía Digestiva (INGED)  11
##   Instituto Otorrinolaringológico Tandil                                        8
##   Sanatorio Allende                                                           115
##                                                                              
##                                                                                 2
##                                                                                 1
##   Centro de Estudios Digestivos                                                 6
##   Clínica de Cuyo                                                              10
##   Clínica San Miguel                                                           48
##   Grupo Mit Santa Fe                                                          136
##   Hospital Italiano de Mendoza                                                 10
##   Hospital Nacional Profesor Alejandro Posadas (HNPAP)                          2
##   Hospital Regional R Carrillo S del Estero                                     1
##   Hospital Regional Río Grande                                                  1
##   IGEA                                                                        158
##   Instituto Modelo de Cardiología de Córdoba                                   95
##   Instituto Modelo de Gastroenterologia de Formosa                             46
##   Instituto Norpatagónico de Gastroenterología y Endoscopía Digestiva (INGED)  30
##   Instituto Otorrinolaringológico Tandil                                        4
##   Sanatorio Allende                                                            52
##                                                                              
##                                                                                 3
##                                                                                 0
##   Centro de Estudios Digestivos                                                 4
##   Clínica de Cuyo                                                               7
##   Clínica San Miguel                                                            1
##   Grupo Mit Santa Fe                                                           27
##   Hospital Italiano de Mendoza                                                  8
##   Hospital Nacional Profesor Alejandro Posadas (HNPAP)                         10
##   Hospital Regional R Carrillo S del Estero                                     2
##   Hospital Regional Río Grande                                                  0
##   IGEA                                                                        169
##   Instituto Modelo de Cardiología de Córdoba                                   26
##   Instituto Modelo de Gastroenterologia de Formosa                             11
##   Instituto Norpatagónico de Gastroenterología y Endoscopía Digestiva (INGED)  20
##   Instituto Otorrinolaringológico Tandil                                        0
##   Sanatorio Allende                                                            10
##                                                                              
##                                                                                 4
##                                                                                 3
##   Centro de Estudios Digestivos                                                 1
##   Clínica de Cuyo                                                               3
##   Clínica San Miguel                                                           13
##   Grupo Mit Santa Fe                                                           54
##   Hospital Italiano de Mendoza                                                  5
##   Hospital Nacional Profesor Alejandro Posadas (HNPAP)                         18
##   Hospital Regional R Carrillo S del Estero                                     2
##   Hospital Regional Río Grande                                                  0
##   IGEA                                                                         73
##   Instituto Modelo de Cardiología de Córdoba                                   25
##   Instituto Modelo de Gastroenterologia de Formosa                              7
##   Instituto Norpatagónico de Gastroenterología y Endoscopía Digestiva (INGED)  30
##   Instituto Otorrinolaringológico Tandil                                        0
##   Sanatorio Allende                                                            14
##                                                                              
##                                                                                 5
##                                                                                 0
##   Centro de Estudios Digestivos                                                 0
##   Clínica de Cuyo                                                               3
##   Clínica San Miguel                                                            4
##   Grupo Mit Santa Fe                                                           26
##   Hospital Italiano de Mendoza                                                  2
##   Hospital Nacional Profesor Alejandro Posadas (HNPAP)                          1
##   Hospital Regional R Carrillo S del Estero                                     1
##   Hospital Regional Río Grande                                                  0
##   IGEA                                                                          7
##   Instituto Modelo de Cardiología de Córdoba                                   14
##   Instituto Modelo de Gastroenterologia de Formosa                              6
##   Instituto Norpatagónico de Gastroenterología y Endoscopía Digestiva (INGED)  19
##   Instituto Otorrinolaringológico Tandil                                        0
##   Sanatorio Allende                                                             3
chi_hernia<-chisq.test(db_total$hernia,db_total$score)
chi_hernia$expected
##                db_total$score
## db_total$hernia         1         2          3          4         5
##              no 775.21087 579.69741 284.472084 237.548853 84.070788
##              si  17.78913  13.30259   6.527916   5.451147  1.929212

3 Tabla 1

#Tabla1:

tabla_1<-tableby(score~kwt(age)+chisq(gender)+
                 kwt(bmi)+chisq(digestive_surgery)+fe(hernia)+
                 fe(prior_incomplete_colonoscopy)+
                 fe(ambulatory_hospitalised)+
                 chisq(indication_colonoscopy)+
                 chisq(preparation)+
                 chisq(first_operator_type)+
                 chisq(second_operator_type)+
                 chisq(schedule)+chisq(veda_vcc_conjunta)+
                 chisq(boston),data=db_total, numeric.stats=c("median","q1q3"),na.tableby(TRUE))

mylabels<-list(age="Edad",gender="Genero",bmi="IMC",digestive_surgery="Cirugia abdominal",hernia="Antecedentes de hernia",prior_incomplete_colonoscopy="Colonoscopia previa incompleta",ambulatory_hospitalised="Ambulatorio u hospitalizado",indication_colonoscopy="Indicacion de la colonoscopia",preparation="Preparacion colonica",operators="Cambio de endoscopista",first_operator_type="tipo de 1° operador",second_operator_type="Tipo de 2° operador",restart_within_single_operator="Reiniciar con otro operador",schedule="Momento de realizacion del procedimiento",veda_vcc_conjunta="VEDA- VCC conjunta",postural_changes="Cambios posturales",manual_pressure_more_than_five_seconds="Compresion abdominal mas de 5 seg",ileocecal_junction_visualization="Visualizacion del ciego",postural_changes="Cambios posturales", boston="Boston",time_entrance="Tiempo de entrada en min",pain="Dolor",consumption_propofol_mg="Consumo de propofol(mg)")

sum_tabla1<-summary(tabla_1, text=T,title = "Tabla 1. Caracteristicas basales y generales de la VCC segun categorias del score ABCD" , pfootnote=TRUE,labelTranslations =mylabels, digits = 2)
sum_tabla1
Tabla 1. Caracteristicas basales y generales de la VCC segun categorias del score ABCD
1 (N=799) 2 (N=600) 3 (N=295) 4 (N=248) 5 (N=86) Total (N=2028) p value
Edad 0.003 (1)
- Median 58.00 58.00 59.00 61.00 60.00 58.00
- Q1, Q3 49.00, 66.00 49.00, 68.00 49.00, 71.00 51.00, 69.25 52.00, 72.00 49.00, 68.00
Genero < 0.001 (2)
- N-Miss 3 7 1 2 0 13
- hombre 443 (55.7%) 260 (43.8%) 95 (32.3%) 86 (35.0%) 34 (39.5%) 918 (45.6%)
- mujer 353 (44.3%) 333 (56.2%) 199 (67.7%) 160 (65.0%) 52 (60.5%) 1097 (54.4%)
IMC < 0.001 (1)
- Median 27.07 26.67 25.95 26.30 27.38 26.77
- Q1, Q3 24.69, 29.97 24.20, 29.55 22.97, 28.70 23.55, 30.84 24.38, 30.57 24.22, 29.76
Cirugia abdominal 0.003 (2)
- N-Miss 3 4 5 0 0 12
- no 473 (59.4%) 346 (58.1%) 161 (55.5%) 119 (48.0%) 38 (44.2%) 1137 (56.4%)
- si 323 (40.6%) 250 (41.9%) 129 (44.5%) 129 (52.0%) 48 (55.8%) 879 (43.6%)
Antecedentes de hernia 0.012 (3)
- N-Miss 6 7 4 5 0 22
- no 783 (98.7%) 582 (98.1%) 280 (96.2%) 232 (95.5%) 84 (97.7%) 1961 (97.8%)
- si 10 (1.3%) 11 (1.9%) 11 (3.8%) 11 (4.5%) 2 (2.3%) 45 (2.2%)
Colonoscopia previa incompleta < 0.001 (3)
- N-Miss 9 12 8 1 1 31
- no 774 (98.0%) 576 (98.0%) 275 (95.8%) 234 (94.7%) 77 (90.6%) 1936 (96.9%)
- si 16 (2.0%) 12 (2.0%) 12 (4.2%) 13 (5.3%) 8 (9.4%) 61 (3.1%)
Ambulatorio u hospitalizado 0.134 (3)
- N-Miss 2 6 4 1 0 13
- ambulatorio 783 (98.2%) 590 (99.3%) 290 (99.7%) 245 (99.2%) 84 (97.7%) 1992 (98.9%)
- hospitalizado 14 (1.8%) 4 (0.7%) 1 (0.3%) 2 (0.8%) 2 (2.3%) 23 (1.1%)
Indicacion de la colonoscopia 0.316 (2)
- N-Miss 1 2 2 1 0 6
- screening ccr 353 (44.2%) 296 (49.5%) 140 (47.8%) 118 (47.8%) 40 (46.5%) 947 (46.8%)
- seguimiento 150 (18.8%) 105 (17.6%) 44 (15.0%) 46 (18.6%) 11 (12.8%) 356 (17.6%)
- diagnostica 278 (34.8%) 192 (32.1%) 102 (34.8%) 80 (32.4%) 35 (40.7%) 687 (34.0%)
- terapeutica programado 17 (2.1%) 5 (0.8%) 7 (2.4%) 3 (1.2%) 0 (0.0%) 32 (1.6%)
Preparacion colonica < 0.001 (2)
- N-Miss 4 1 0 1 1 7
- barex 437 (55.0%) 366 (61.1%) 199 (67.5%) 145 (58.7%) 36 (42.4%) 1183 (58.5%)
- sulfodom 40 (5.0%) 89 (14.9%) 50 (16.9%) 48 (19.4%) 14 (16.5%) 241 (11.9%)
- fosfodom 86 (10.8%) 74 (12.4%) 31 (10.5%) 39 (15.8%) 25 (29.4%) 255 (12.6%)
- otra 232 (29.2%) 70 (11.7%) 15 (5.1%) 15 (6.1%) 10 (11.8%) 342 (16.9%)
tipo de 1° operador < 0.001 (2)
- N-Miss 3 0 0 3 0 6
- junior 47 (5.9%) 44 (7.3%) 72 (24.4%) 76 (31.0%) 4 (4.7%) 243 (12.0%)
- experto 749 (94.1%) 556 (92.7%) 223 (75.6%) 169 (69.0%) 82 (95.3%) 1779 (88.0%)
Tipo de 2° operador < 0.001 (2)
- N-Miss 0 0 1 0 0 1
- junior 6 (0.8%) 30 (5.0%) 19 (6.5%) 27 (10.9%) 18 (20.9%) 100 (4.9%)
- experto 13 (1.6%) 1 (0.2%) 2 (0.7%) 80 (32.3%) 4 (4.7%) 100 (4.9%)
- no necesario 780 (97.6%) 569 (94.8%) 273 (92.9%) 141 (56.9%) 64 (74.4%) 1827 (90.1%)
Momento de realizacion del procedimiento < 0.001 (2)
- N-Miss 4 11 3 2 3 23
- mañana 523 (65.8%) 353 (59.9%) 205 (70.2%) 185 (75.2%) 56 (67.5%) 1322 (65.9%)
- tarde 272 (34.2%) 236 (40.1%) 87 (29.8%) 61 (24.8%) 27 (32.5%) 683 (34.1%)
VEDA- VCC conjunta < 0.001 (2)
- N-Miss 4 6 4 5 1 20
- no 433 (54.5%) 317 (53.4%) 208 (71.5%) 124 (51.0%) 45 (52.9%) 1127 (56.1%)
- si 362 (45.5%) 277 (46.6%) 83 (28.5%) 119 (49.0%) 40 (47.1%) 881 (43.9%)
Boston < 0.001 (2)
- Bueno 244 (30.5%) 281 (46.8%) 136 (46.1%) 137 (55.2%) 69 (80.2%) 867 (42.8%)
- Excelente 555 (69.5%) 319 (53.2%) 159 (53.9%) 111 (44.8%) 17 (19.8%) 1161 (57.2%)
  1. Kruskal-Wallis rank sum test
  2. Pearson’s Chi-squared test
  3. Fisher’s Exact Test for Count Data
#write2word(sum_tabla1, "C:/Users/gabyt/Downloads/CEECS 2021/taller/tabla1.doc")

#Tabla 2

tabla_vcc<-tableby(score~chisq(operators)
                   +chisq(restart_within_single_operator)+
                     +chisq(manual_pressure_more_than_five_seconds)
                   +chisq(ileocecal_junction_visualization)
                   +chisq(postural_changes),data=db_total,
                   numeric.stats=c("Nmiss","median","q1q3"),na.tableby(TRUE))

sum_tabla2<-summary(tabla_vcc, text=T,title = "Tabla 2. Caracteristicas tecnicas segun categorias del score ABCD" , pfootnote=TRUE,labelTranslations =mylabels, digits = 2) 
sum_tabla2
Tabla 2. Caracteristicas tecnicas segun categorias del score ABCD
1 (N=799) 2 (N=600) 3 (N=295) 4 (N=248) 5 (N=86) Total (N=2028) p value
Cambio de endoscopista < 0.001 (1)
- N-Miss 0 0 0 3 0 3
- no 799 (100.0%) 600 (100.0%) 295 (100.0%) 147 (60.0%) 81 (94.2%) 1922 (94.9%)
- si 0 (0.0%) 0 (0.0%) 0 (0.0%) 98 (40.0%) 5 (5.8%) 103 (5.1%)
Reiniciar con otro operador < 0.001 (1)
- N-Miss 0 0 0 1 1 2
- no 799 (100.0%) 600 (100.0%) 295 (100.0%) 169 (68.4%) 72 (84.7%) 1935 (95.5%)
- si 0 (0.0%) 0 (0.0%) 0 (0.0%) 78 (31.6%) 13 (15.3%) 91 (4.5%)
Compresion abdominal mas de 5 seg < 0.001 (1)
- N-Miss 0 0 0 2 2 4
- no 799 (100.0%) 0 (0.0%) 0 (0.0%) 47 (19.1%) 25 (29.8%) 871 (43.0%)
- si<10 seg 0 (0.0%) 600 (100.0%) 0 (0.0%) 76 (30.9%) 22 (26.2%) 698 (34.5%)
- si>10 0 (0.0%) 0 (0.0%) 295 (100.0%) 119 (48.4%) 13 (15.5%) 427 (21.1%)
- si,pero no se progreso 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (1.6%) 24 (28.6%) 28 (1.4%)
Visualizacion del ciego < 0.001 (1)
- no 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 86 (100.0%) 86 (4.2%)
- si 799 (100.0%) 600 (100.0%) 295 (100.0%) 248 (100.0%) 0 (0.0%) 1942 (95.8%)
Cambios posturales < 0.001 (1)
- no 799 (100.0%) 600 (100.0%) 295 (100.0%) 141 (56.9%) 54 (62.8%) 1889 (93.1%)
- si 0 (0.0%) 0 (0.0%) 0 (0.0%) 107 (43.1%) 32 (37.2%) 139 (6.9%)
  1. Pearson’s Chi-squared test
#write2word(sum_tabla2, "C:/Users/gabyt/Downloads/CEECS 2021/taller/tabla2.doc")

#Tabla desenlaces sec

tabla_sec<-tableby(score~kwt(time_entrance)+as.ordered(pain)+kwt(consumption_propofol_mg),data=db_total,
                   numeric.stats=c("Nmiss","median","q1q3"),na.tableby(TRUE))

sum_tabla_sec<-summary(tabla_sec, text=T,title = "Tabla 3. Desenlaces secundarios segun categorias del score ABCD" , pfootnote=TRUE,labelTranslations =mylabels, digits = 2) 
sum_tabla_sec
Tabla 3. Desenlaces secundarios segun categorias del score ABCD
1 (N=799) 2 (N=600) 3 (N=295) 4 (N=248) 5 (N=86) Total (N=2028) p value
Tiempo de entrada en min < 0.001 (1)
- N-Miss 3 6 2 3 1 15
- Median 4.17 4.91 5.50 6.00 5.33 4.83
- Q1, Q3 3.00, 6.00 3.44, 6.58 3.75, 8.00 4.50, 8.33 3.50, 7.50 3.33, 7.00
as.ordered(pain) < 0.001 (2)
- leve 778 (97.4%) 534 (89.0%) 235 (79.7%) 192 (77.4%) 79 (91.9%) 1818 (89.6%)
- moderado 21 (2.6%) 65 (10.8%) 56 (19.0%) 56 (22.6%) 7 (8.1%) 205 (10.1%)
- severo 0 (0.0%) 1 (0.2%) 4 (1.4%) 0 (0.0%) 0 (0.0%) 5 (0.2%)
Consumo de propofol(mg) < 0.001 (1)
- N-Miss 2 4 5 1 0 12
- Median 200.00 200.00 200.00 202.00 183.00 200.00
- Q1, Q3 170.00, 280.00 156.00, 224.25 172.50, 300.00 170.00, 300.00 150.00, 220.00 160.00, 250.00
  1. Kruskal-Wallis rank sum test
  2. Trend test for ordinal variables
#write2word(sum_tabla_sec, "C:/Users/gabyt/Downloads/CEECS 2021/taller/tabla3.doc")

4 Tratamiento de los datos faltantes

#Evaluacion de los datos faltantes

#subset para imputar, las variables pain y propofol las vamos a usar luego como outcome sec

vis_miss(db_total,sort=TRUE)

vis_miss(db_total,cluster = TRUE)

vis_dat(db_total)

apply(is.na(db_total),2,sum)
##                            institution                                    age 
##                                      0                                      2 
##                                 gender                                 height 
##                                     14                                      4 
##                                 weight                      digestive_surgery 
##                                      5                                     13 
##                 type_digestive_surgery                                 hernia 
##                                   1204                                     39 
##           prior_incomplete_colonoscopy                ambulatory_hospitalised 
##                                     37                                     14 
##                 indication_colonoscopy                            preparation 
##                                      9                                     10 
##                      other_preparation                               schedule 
##                                   2111                                     28 
##                      veda_vcc_conjunta                          time_entrance 
##                                     39                                     17 
## manual_pressure_more_than_five_seconds                       postural_changes 
##                                     15                                     14 
##                              operators                    first_operator_type 
##                                     39                                     23 
##                   second_operator_type                    third_operator_type 
##                                      1                                   2100 
##         restart_within_single_operator                      another_technique 
##                                     22                                     93 
##                 type_another_technique       ileocecal_junction_visualization 
##                                   2072                                     16 
##                           time_outside                             bbps_right 
##                                      5                                     42 
##                        bbps_transverse                              bbps_left 
##                                     21                                     19 
##                               sedation                consumption_propofol_mg 
##                                     70                                     14 
##                consumption_fentanyl_ug               consumption_midazolam_ug 
##                                   1141                                   2013 
##                         other_findings                  pain_post_colonoscopy 
##                                    605                                    327 
##                         adverse_events                             boston_sum 
##                                   2109                                     57 
##                                 boston                                age_cat 
##                                      0                                      2 
##                                    bmi                                bmi_cat 
##                                      6                                      6 
##                                   pain                                  score 
##                                      0                                     83
sum(is.na(db_total))#cantidad de celdas vacias
## [1] 14461
n_miss(db_total)#otra opcion
## [1] 14461
n_case_miss(db_total)#cantidad de observaciones con algun dato faltante
## [1] 2111
pct_miss_case(db_total)#proporcion de filas con algun dato faltante
## [1] 100

5 Imputacion de datos faltantes

#subset para imputar, las variables pain, sedacion y consumo de fentanilo las vamos a dejar para una 2da instancia como outcomes secundarios

db1<-subset(db_total,select=c(age,gender,bmi,digestive_surgery,prior_incomplete_colonoscopy,hernia,institution,ambulatory_hospitalised,preparation,indication_colonoscopy,schedule,veda_vcc_conjunta,time_entrance,first_operator_type,boston,consumption_propofol_mg,pain,score))

#Datos faltantes

vis_miss(db1,sort=TRUE)

gg_miss_var(db1)#1%

aggr_plot <- aggr(db1, col=c('blue','red'), numbers=TRUE, sortVars=TRUE, labels=names(db1), cex.axis=.7, gap=3, ylab=c("Histograma de missing data","Patron"))

## 
##  Variables sorted by number of missings: 
##                      Variable        Count
##                         score 0.0393178588
##                        hernia 0.0184746566
##             veda_vcc_conjunta 0.0184746566
##  prior_incomplete_colonoscopy 0.0175272383
##                      schedule 0.0132638560
##           first_operator_type 0.0108953103
##                 time_entrance 0.0080530554
##                        gender 0.0066319280
##       ambulatory_hospitalised 0.0066319280
##       consumption_propofol_mg 0.0066319280
##             digestive_surgery 0.0061582189
##                   preparation 0.0047370914
##        indication_colonoscopy 0.0042633823
##                           bmi 0.0028422549
##                           age 0.0009474183
##                   institution 0.0000000000
##                        boston 0.0000000000
##                          pain 0.0000000000
#veamos proporcion real de faltantes

db1_miss <- na.omit(db1)
n_inicial <- nrow(db1)
n_final <- nrow(db1_miss)
(n_inicial- n_final)/n_inicial# 11%
## [1] 0.1141639
#imputacion multiple

base_imputada <- mice (db1, m = 10,defaultMethod = c("pmm","logreg", "polyreg", "polr"), maxit = 5,printFlag = F, seed = 123)
summary(base_imputada)#genero 10 muestras con imputaciones posibles
## Class: mids
## Number of multiple imputations:  10 
## Imputation methods:
##                          age                       gender 
##                        "pmm"                     "logreg" 
##                          bmi            digestive_surgery 
##                        "pmm"                     "logreg" 
## prior_incomplete_colonoscopy                       hernia 
##                     "logreg"                     "logreg" 
##                  institution      ambulatory_hospitalised 
##                           ""                     "logreg" 
##                  preparation       indication_colonoscopy 
##                    "polyreg"                    "polyreg" 
##                     schedule            veda_vcc_conjunta 
##                     "logreg"                     "logreg" 
##                time_entrance          first_operator_type 
##                        "pmm"                     "logreg" 
##                       boston      consumption_propofol_mg 
##                           ""                        "pmm" 
##                         pain                        score 
##                           ""                       "polr" 
## PredictorMatrix:
##                              age gender bmi digestive_surgery
## age                            0      1   1                 1
## gender                         1      0   1                 1
## bmi                            1      1   0                 1
## digestive_surgery              1      1   1                 0
## prior_incomplete_colonoscopy   1      1   1                 1
## hernia                         1      1   1                 1
##                              prior_incomplete_colonoscopy hernia institution
## age                                                     1      1           1
## gender                                                  1      1           1
## bmi                                                     1      1           1
## digestive_surgery                                       1      1           1
## prior_incomplete_colonoscopy                            0      1           1
## hernia                                                  1      0           1
##                              ambulatory_hospitalised preparation
## age                                                1           1
## gender                                             1           1
## bmi                                                1           1
## digestive_surgery                                  1           1
## prior_incomplete_colonoscopy                       1           1
## hernia                                             1           1
##                              indication_colonoscopy schedule veda_vcc_conjunta
## age                                               1        1                 1
## gender                                            1        1                 1
## bmi                                               1        1                 1
## digestive_surgery                                 1        1                 1
## prior_incomplete_colonoscopy                      1        1                 1
## hernia                                            1        1                 1
##                              time_entrance first_operator_type boston
## age                                      1                   1      1
## gender                                   1                   1      1
## bmi                                      1                   1      1
## digestive_surgery                        1                   1      1
## prior_incomplete_colonoscopy             1                   1      1
## hernia                                   1                   1      1
##                              consumption_propofol_mg pain score
## age                                                1    1     1
## gender                                             1    1     1
## bmi                                                1    1     1
## digestive_surgery                                  1    1     1
## prior_incomplete_colonoscopy                       1    1     1
## hernia                                             1    1     1
base_imputada$imp$score#muestra las observaciones q se imputaron
##      1 2 3 4 5 6 7 8 9 10
## 31   1 2 1 2 2 1 1 1 1  1
## 37   2 2 4 2 2 3 1 2 3  2
## 38   1 2 1 4 2 4 4 2 3  1
## 64   1 2 4 3 1 4 2 1 3  2
## 66   4 4 3 4 3 4 4 3 4  4
## 98   2 1 2 1 1 3 1 1 1  2
## 115  2 1 2 4 1 1 2 3 3  2
## 121  1 1 1 1 1 1 1 3 2  1
## 125  1 1 1 1 1 2 1 1 1  2
## 131  2 1 2 2 1 4 3 1 1  1
## 140  3 1 4 2 2 1 1 2 3  1
## 154  1 1 3 2 1 2 3 4 1  2
## 194  4 4 1 1 3 3 2 4 3  3
## 213  2 1 2 1 1 2 1 2 1  2
## 238  1 1 1 1 1 1 1 1 1  2
## 241  1 2 1 1 1 1 1 2 1  3
## 257  1 1 3 1 1 4 2 1 1  3
## 349  4 2 3 2 3 3 2 2 2  4
## 378  4 2 2 4 3 3 1 4 1  4
## 426  2 2 1 2 2 2 4 4 2  1
## 432  4 2 1 2 1 2 2 1 1  2
## 453  4 3 1 2 2 4 1 2 1  1
## 476  4 4 3 2 4 3 4 2 1  1
## 487  1 4 4 2 4 4 2 2 2  5
## 529  2 2 1 2 1 1 3 2 2  2
## 555  1 4 1 1 1 1 1 1 1  1
## 582  4 1 2 3 2 4 3 4 1  3
## 593  3 3 5 3 1 1 3 3 2  2
## 628  3 2 1 1 1 3 1 1 3  1
## 673  2 4 1 2 1 2 2 1 2  2
## 762  1 2 3 2 2 1 2 3 1  2
## 814  3 3 2 4 4 1 3 2 1  2
## 885  3 4 2 2 2 2 1 4 3  3
## 891  3 2 1 2 1 2 2 2 2  2
## 937  2 1 2 2 1 1 4 2 1  1
## 948  2 4 3 3 2 2 2 2 3  2
## 995  4 1 2 3 1 3 2 1 2  4
## 1012 2 4 2 1 3 1 1 2 1  1
## 1019 2 3 2 3 2 2 2 5 4  2
## 1045 4 1 5 3 1 4 1 5 2  4
## 1117 1 2 1 2 1 1 3 1 2  1
## 1124 4 4 3 3 2 1 4 3 2  4
## 1150 1 4 2 2 3 1 3 4 1  1
## 1220 1 2 2 2 1 2 2 1 4  2
## 1230 2 1 1 1 1 1 1 2 2  1
## 1328 1 2 2 2 2 1 3 2 1  1
## 1365 1 1 1 2 1 2 2 1 2  1
## 1388 3 1 1 1 1 3 2 2 2  2
## 1394 1 1 1 1 1 1 2 3 2  1
## 1402 4 4 3 2 2 2 2 1 4  4
## 1442 4 1 1 1 1 2 3 1 1  1
## 1460 1 2 2 4 1 2 3 4 2  2
## 1465 2 3 1 1 2 2 1 1 2  2
## 1467 4 3 2 2 4 4 3 1 2  3
## 1468 3 3 4 5 3 2 4 1 3  5
## 1478 1 3 1 1 1 3 2 3 2  2
## 1489 5 5 2 2 2 3 5 2 2  3
## 1495 3 2 2 1 1 4 5 3 4  2
## 1506 2 3 2 2 1 1 2 2 3  4
## 1518 2 1 2 2 1 2 2 1 5  1
## 1539 2 2 2 3 2 3 4 1 1  3
## 1561 1 1 1 4 1 2 1 2 1  1
## 1597 2 2 1 3 2 3 1 1 1  2
## 1598 2 3 1 2 1 1 2 4 2  5
## 1609 1 1 3 3 1 1 1 2 4  2
## 1668 1 1 1 1 1 1 1 2 3  1
## 1693 5 2 2 4 2 3 3 4 4  4
## 1752 1 1 1 1 1 1 2 4 1  1
## 1771 2 2 1 1 1 2 1 1 2  1
## 1780 2 1 1 3 1 2 2 1 1  4
## 1784 3 4 2 3 1 2 2 3 3  3
## 1800 3 1 2 2 2 2 2 2 3  4
## 1814 5 1 1 1 2 1 2 4 4  1
## 1840 1 2 1 2 1 1 3 3 2  2
## 1857 2 1 1 3 1 2 1 4 3  2
## 1858 2 1 3 3 2 1 2 1 2  1
## 1864 1 1 1 1 1 1 1 1 1  1
## 1908 3 4 1 4 3 2 4 2 3  2
## 1989 1 3 3 2 4 5 5 2 2  1
## 2021 1 3 2 4 2 4 2 2 3  4
## 2079 1 2 3 4 1 4 3 2 2  3
## 2110 1 2 1 1 1 1 2 1 1  1
## 2111 2 2 2 3 5 2 3 4 3  2
densityplot(base_imputada)

fit_ordinal <- with(base_imputada,clm(score~age+gender+bmi+prior_incomplete_colonoscopy+ambulatory_hospitalised+preparation+schedule+veda_vcc_conjunta+time_entrance+first_operator_type+boston, link = "logit"))
print(pool(fit_ordinal))
## Class: mipo    m = 10 
##                                    term  m     estimate         ubar
## 1                                   1|2 10 -0.816407191 1.127052e-01
## 2                                   2|3 10  0.636148621 1.121322e-01
## 3                                   3|4 10  1.582140213 1.131368e-01
## 4                                   4|5 10  3.184541078 1.221454e-01
## 5                                   age 10  0.009687813 9.747513e-06
## 6                           gendermujer 10  0.543399788 7.083237e-03
## 7                                   bmi 10 -0.014863372 7.138722e-05
## 8        prior_incomplete_colonoscopysi 10  0.766980961 5.668907e-02
## 9  ambulatory_hospitalisedhospitalizado 10 -0.691735159 1.859350e-01
## 10                  preparationsulfodom 10  0.462809617 1.633565e-02
## 11                  preparationfosfodom 10  0.501435918 1.664872e-02
## 12                      preparationotra 10 -0.893729977 1.659131e-02
## 13                        scheduletarde 10  0.114852888 7.690895e-03
## 14                  veda_vcc_conjuntasi 10 -0.026364449 7.084479e-03
## 15                        time_entrance 10  0.077053635 1.356397e-04
## 16           first_operator_typeexperto 10 -1.014483655 1.666140e-02
## 17                      bostonExcelente 10 -0.550907356 7.798104e-03
##               b            t dfcom       df        riv     lambda        fmi
## 1  4.862980e-03 1.180545e-01  2094 1372.064 0.04746257 0.04531195 0.04670052
## 2  5.288897e-03 1.179500e-01  2094 1293.442 0.05188326 0.04932416 0.05079075
## 3  5.292342e-03 1.189584e-01  2094 1300.881 0.05145608 0.04893792 0.05039674
## 4  5.612613e-03 1.283192e-01  2094 1316.858 0.05054531 0.04811340 0.04955581
## 5  5.796380e-07 1.038511e-05  2094 1077.465 0.06541174 0.06139573 0.06313314
## 6  3.054161e-04 7.419195e-03  2094 1372.657 0.04742997 0.04528224 0.04667026
## 7  2.303336e-06 7.392089e-05  2094 1598.695 0.03549193 0.03427543 0.03548131
## 8  1.938096e-03 5.882097e-02  2094 1557.764 0.03760700 0.03624398 0.03747896
## 9  1.146557e-02 1.985471e-01  2094 1042.999 0.06783083 0.06352208 0.06531267
## 10 4.416255e-04 1.682144e-02  2094 1709.715 0.02973792 0.02887911 0.03001313
## 11 4.515201e-04 1.714539e-02  2094 1707.910 0.02983246 0.02896826 0.03010337
## 12 3.959398e-04 1.702685e-02  2094 1775.383 0.02625071 0.02557924 0.02667509
## 13 3.450438e-04 8.070443e-03  2094 1338.057 0.04935033 0.04702941 0.04845063
## 14 1.740457e-04 7.275929e-03  2094 1761.004 0.02702390 0.02631282 0.02741678
## 15 5.178597e-06 1.413362e-04  2094 1473.668 0.04199697 0.04030431 0.04160412
## 16 2.568095e-04 1.694389e-02  2094 1934.237 0.01695479 0.01667212 0.01768730
## 17 3.685721e-04 8.203534e-03  2094 1291.576 0.05199076 0.04942131 0.05088986
summary(pool(fit_ordinal))
##                                    term     estimate   std.error  statistic
## 1                                   1|2 -0.816407191 0.343590564 -2.3761048
## 2                                   2|3  0.636148621 0.343438544  1.8522924
## 3                                   3|4  1.582140213 0.344903433  4.5871976
## 4                                   4|5  3.184541078 0.358216739  8.8899840
## 5                                   age  0.009687813 0.003222594  3.0062152
## 6                           gendermujer  0.543399788 0.086134748  6.3087174
## 7                                   bmi -0.014863372 0.008597726 -1.7287562
## 8        prior_incomplete_colonoscopysi  0.766980961 0.242530354  3.1624122
## 9  ambulatory_hospitalisedhospitalizado -0.691735159 0.445586244 -1.5524159
## 10                  preparationsulfodom  0.462809617 0.129697476  3.5683780
## 11                  preparationfosfodom  0.501435918 0.130940398  3.8294974
## 12                      preparationotra -0.893729977 0.130486955 -6.8491902
## 13                        scheduletarde  0.114852888 0.089835645  1.2784779
## 14                  veda_vcc_conjuntasi -0.026364449 0.085299055 -0.3090825
## 15                        time_entrance  0.077053635 0.011888489  6.4813650
## 16           first_operator_typeexperto -1.014483655 0.130168698 -7.7936068
## 17                      bostonExcelente -0.550907356 0.090573361 -6.0824436
##          df      p.value
## 1  1372.064 1.763311e-02
## 2  1293.442 6.421154e-02
## 3  1300.881 4.925607e-06
## 4  1316.858 0.000000e+00
## 5  1077.465 2.706500e-03
## 6  1372.657 3.787228e-10
## 7  1598.695 8.404580e-02
## 8  1557.764 1.594846e-03
## 9  1042.999 1.208661e-01
## 10 1709.715 3.691072e-04
## 11 1707.910 1.330432e-04
## 12 1775.383 1.020184e-11
## 13 1338.057 2.013027e-01
## 14 1761.004 7.572953e-01
## 15 1473.668 1.236469e-10
## 16 1934.237 1.065814e-14
## 17 1291.576 1.556654e-09
fit_ordinal$analyses #genero 10 modelos con las bases imputadas
## [[1]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2742.01 5518.01 5(0)  2.52e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                             0.009811                             0.567388 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            -0.013361                             0.800790 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            -0.709474                             0.486454 
##                  preparationfosfodom                      preparationotra 
##                             0.514967                            -0.880880 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                             0.141907                            -0.029486 
##                        time_entrance           first_operator_typeexperto 
##                             0.076982                            -0.993198 
##                      bostonExcelente 
##                            -0.566596 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.7333  0.7123  1.6479  3.2505 
## 
## [[2]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2745.17 5524.35 5(0)  4.37e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                             0.009022                             0.518357 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            -0.017535                             0.811410 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            -0.721421                             0.458274 
##                  preparationfosfodom                      preparationotra 
##                             0.486661                            -0.873759 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                             0.081206                            -0.013530 
##                        time_entrance           first_operator_typeexperto 
##                             0.076102                            -0.999192 
##                      bostonExcelente 
##                            -0.535375 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.9287  0.5161  1.4546  3.0749 
## 
## [[3]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2731.49 5496.99 5(0)  1.61e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                             0.009644                             0.535361 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            -0.015360                             0.789259 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            -0.620087                             0.454233 
##                  preparationfosfodom                      preparationotra 
##                             0.481183                            -0.924434 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                             0.110522                            -0.037570 
##                        time_entrance           first_operator_typeexperto 
##                             0.077926                            -1.018629 
##                      bostonExcelente 
##                            -0.527561 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.8210  0.6317  1.5840  3.1647 
## 
## [[4]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2739.97 5513.94 5(0)  3.12e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                             0.009224                             0.566324 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            -0.013083                             0.701555 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            -0.611454                             0.485646 
##                  preparationfosfodom                      preparationotra 
##                             0.469899                            -0.863308 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                             0.138007                            -0.012223 
##                        time_entrance           first_operator_typeexperto 
##                             0.080772                            -1.022900 
##                      bostonExcelente 
##                            -0.558602 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.7740  0.6888  1.6434  3.2529 
## 
## [[5]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2722.08 5478.16 5(0)  2.15e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                             0.009206                             0.556520 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            -0.015104                             0.763771 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            -0.673731                             0.423299 
##                  preparationfosfodom                      preparationotra 
##                             0.502803                            -0.903106 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                             0.110903                            -0.021087 
##                        time_entrance           first_operator_typeexperto 
##                             0.079425                            -1.029008 
##                      bostonExcelente 
##                            -0.551527 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.8142  0.6327  1.5754  3.1667 
## 
## [[6]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2738.07 5510.13 5(0)  3.73e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                             0.009112                             0.538214 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            -0.015226                             0.738830 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            -0.623185                             0.440412 
##                  preparationfosfodom                      preparationotra 
##                             0.497655                            -0.924492 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                             0.120674                            -0.038283 
##                        time_entrance           first_operator_typeexperto 
##                             0.078455                            -0.997073 
##                      bostonExcelente 
##                            -0.572033 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.8660  0.5836  1.5283  3.1469 
## 
## [[7]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2750.48 5534.96 5(0)  1.67e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                              0.00889                              0.51915 
##                                  bmi       prior_incomplete_colonoscopysi 
##                             -0.01640                              0.74096 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                             -0.59071                              0.48763 
##                  preparationfosfodom                      preparationotra 
##                              0.48739                             -0.88975 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                              0.11251                             -0.03781 
##                        time_entrance           first_operator_typeexperto 
##                              0.07519                             -1.01088 
##                      bostonExcelente 
##                             -0.51756 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.9204  0.5298  1.4784  3.0597 
## 
## [[8]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2741.09 5516.18 5(0)  3.29e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                              0.01101                              0.53665 
##                                  bmi       prior_incomplete_colonoscopysi 
##                             -0.01395                              0.72067 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                             -0.86493                              0.45543 
##                  preparationfosfodom                      preparationotra 
##                              0.52278                             -0.88734 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                              0.11711                             -0.03344 
##                        time_entrance           first_operator_typeexperto 
##                              0.07562                             -1.01426 
##                      bostonExcelente 
##                             -0.54319 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.7317  0.7203  1.6568  3.2727 
## 
## [[9]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2734.98 5503.95 5(0)  2.47e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                              0.01090                              0.54165 
##                                  bmi       prior_incomplete_colonoscopysi 
##                             -0.01571                              0.84354 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                             -0.88924                              0.46676 
##                  preparationfosfodom                      preparationotra 
##                              0.54016                             -0.89083 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                              0.09159                             -0.00226 
##                        time_entrance           first_operator_typeexperto 
##                              0.07282                             -1.01346 
##                      bostonExcelente 
##                             -0.56908 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.7999  0.6546  1.6190  3.2194 
## 
## [[10]]
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2730.32 5494.63 5(0)  2.35e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                              0.01007                              0.55438 
##                                  bmi       prior_incomplete_colonoscopysi 
##                             -0.01290                              0.75902 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                             -0.61312                              0.46995 
##                  preparationfosfodom                      preparationotra 
##                              0.51087                             -0.89939 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                              0.12410                             -0.03795 
##                        time_entrance           first_operator_typeexperto 
##                              0.07725                             -1.04624 
##                      bostonExcelente 
##                             -0.56755 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.7750  0.6917  1.6335  3.2372
fit_ordinal$analyses[[5]]# podemos elegir uno y trabajar con ese
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + ambulatory_hospitalised + preparation + schedule + veda_vcc_conjunta + time_entrance + first_operator_type + boston
## 
##  link  threshold nobs logLik   AIC     niter max.grad cond.H 
##  logit flexible  2111 -2722.08 5478.16 5(0)  2.15e-08 1.2e+06
## 
## Coefficients:
##                                  age                          gendermujer 
##                             0.009206                             0.556520 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            -0.015104                             0.763771 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            -0.673731                             0.423299 
##                  preparationfosfodom                      preparationotra 
##                             0.502803                            -0.903106 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                             0.110903                            -0.021087 
##                        time_entrance           first_operator_typeexperto 
##                             0.079425                            -1.029008 
##                      bostonExcelente 
##                            -0.551527 
## 
## Threshold coefficients:
##     1|2     2|3     3|4     4|5 
## -0.8142  0.6327  1.5754  3.1667

6 Eleccion de la base de datos para modelar

db_imp<-complete(base_imputada,4) # o tmb podemos elegir una de las 10 bases imputadas y armar el modelo
str(db_imp)
## 'data.frame':    2111 obs. of  18 variables:
##  $ age                         : num  60 73 42 67 67 73 35 70 47 54 ...
##  $ gender                      : Factor w/ 2 levels "hombre","mujer": 1 1 1 2 2 1 2 1 2 1 ...
##  $ bmi                         : num  27.8 23.6 24.2 31.9 24.6 ...
##  $ digestive_surgery           : Factor w/ 2 levels "no","si": 1 1 1 1 1 1 1 1 1 1 ...
##  $ prior_incomplete_colonoscopy: Factor w/ 2 levels "no","si": 1 1 1 1 1 1 1 1 1 1 ...
##  $ hernia                      : Factor w/ 2 levels "no","si": 1 2 1 1 1 1 1 1 1 1 ...
##  $ institution                 : Factor w/ 15 levels "","Centro de Estudios Digestivos",..: 11 11 11 11 10 10 10 10 10 10 ...
##  $ ambulatory_hospitalised     : Factor w/ 2 levels "ambulatorio",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ preparation                 : Factor w/ 4 levels "barex","sulfodom",..: 4 1 4 4 1 2 1 1 1 1 ...
##  $ indication_colonoscopy      : Factor w/ 4 levels "screening ccr",..: 1 3 2 1 3 3 3 1 1 1 ...
##  $ schedule                    : Factor w/ 2 levels "mañana","tarde": 1 1 1 1 2 2 2 2 2 2 ...
##  $ veda_vcc_conjunta           : Factor w/ 2 levels "no","si": 2 1 1 1 1 1 1 1 2 1 ...
##  $ time_entrance               : num  3.5 3.5 2 8 15.1 ...
##  $ first_operator_type         : Factor w/ 2 levels "junior","experto": 2 2 2 2 2 2 2 2 2 2 ...
##  $ boston                      : Factor w/ 2 levels "Bueno","Excelente": 2 2 2 2 2 2 2 1 2 1 ...
##  $ consumption_propofol_mg     : num  300 200 280 250 200 300 220 200 350 200 ...
##  $ pain                        : Factor w/ 3 levels "leve","moderado",..: 1 1 1 1 1 3 3 1 1 1 ...
##  $ score                       : Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 1 1 1 4 3 2 3 2 2 2 ...
vis_miss(db_imp,sort=TRUE)

p1<-ggplot(data = db_imp, mapping = aes(x=score, y=bmi))+
  geom_violin(mapping = aes(fill=score))+
  geom_jitter(size=1, position = position_jitter(width = 0.05))+labs(title = "IMC vs SCORE",y="IMC")+
  theme(legend.position="none",axis.title = element_text(size=13,face = "bold"),axis.text = element_text(size=13))

p2<-ggplot(db_imp, aes(gender))+
  geom_bar(aes(fill=score),position="dodge",width=0.7)+labs(title = "Género vs SCORE",x="",y="")+theme(axis.text = element_text(size=13))

p3<-ggplot(db_imp, aes(pain))+
  geom_bar(aes(fill=score),position="dodge",width=0.7)+labs(title = "Dolor vs SCORE",x="",y="")+theme(axis.text = element_text(size=13))

p4<-ggplot(data = db_imp, mapping = aes(x=score, y=time_entrance))+
  geom_violin(mapping = aes(fill=score))+
  geom_jitter(size=1, position = position_jitter(width = 0.05))+labs(title = "Tiempo de entrada vs SCORE",y="")+
  theme(legend.position="none",axis.title = element_text(size=13,face = "bold"),axis.text = element_text(size=13))

plot_grid(p1,p2,p3,p4)

set.seed(123)

sample <- sample(1:2111)
train_db <- sort(sample(1:nrow(db_imp), size=floor(nrow(db_imp)*(2/3))))
test_db <- setdiff(1:nrow(db_imp), train_db)
datatrain <- db_imp[train_db,]
datatest <- db_imp[test_db,]
# Construct OF prediction rule using the training dataset (default
# perffunction = "probability" corresponding to the
# (negative) ranked probability score as performance function):

ordforres <- ordfor(depvar="score", data=datatrain, nsets=1000, ntreeperdiv=100,
ntreefinal=5000, perffunction = "equal", importance = c("rps", "accuracy"))

sort(ordforres$varimp, decreasing = TRUE)
##                  institution                  preparation 
##                 2.317394e-02                 1.469876e-02 
##                         pain                time_entrance 
##                 1.014448e-02                 8.294402e-03 
##                       boston      consumption_propofol_mg 
##                 6.369444e-03                 5.772367e-03 
##          first_operator_type                          bmi 
##                 5.448366e-03                 5.024756e-03 
##                       gender                          age 
##                 3.064250e-03                 2.123310e-03 
##                     schedule       indication_colonoscopy 
##                 1.036556e-03                 9.171245e-04 
## prior_incomplete_colonoscopy            veda_vcc_conjunta 
##                 8.787676e-04                 8.414402e-04 
##      ambulatory_hospitalised                       hernia 
##                 2.222357e-04                 7.108103e-05 
##            digestive_surgery 
##                -9.974777e-05
v<-as.vector(ordforres$varimp)
w<-(as.vector((colnames(db_imp[,-c(7,18)]))))#sacamos la var de rta y de ef aleatorios
DF<-cbind(w,v)
DF<-as.data.frame(DF)

DF<-DF %>% mutate(v=as.numeric(v),
              w=as.factor(w))

ggplot(DF, aes(x=reorder(w,v), y=v,fill=w))+ 
  geom_bar(stat="identity", position="dodge")+ coord_flip()+
  ylab("Variable Importance")+
  xlab("")+
  theme(legend.position = "none")

ordforres$forestfinal
## Ranger result
## 
## Call:
##  rangerordfor(dependent.variable.name = "ymetric", data = datait,      num.trees = ntreefinal, importance = ifelse(importanceinternal ==          "rps", "none", "permutation"), num.threads = num.threads,      borders = qnorm(bordersbest[-c(1, length(bordersbest))]),      mtry = mtry, min.node.size = min.node.size, replace = replace,      sample.fraction = sample.fraction, always.split.variables = always.split.variables,      keep.inbag = keep.inbag) 
## 
## Type:                             Regression 
## Number of trees:                  5000 
## Sample size:                      1407 
## Number of independent variables:  17 
## Mtry:                             4 
## Target node size:                 5 
## Variable importance mode:         none 
## Splitrule:                        variance 
## OOB prediction error (MSE):       0.2639955 
## R squared (OOB):                  0.198138
#ECM del ordinal forest 0.26
#Modelo: introducimos una variable de efectos aleatorios:institucion

model1 <- clmm(score~age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+hernia+ambulatory_hospitalised+preparation+schedule+veda_vcc_conjunta+time_entrance+first_operator_type+boston+pain+consumption_propofol_mg + (1|institution),data=db_imp, Hess=T)

summary(model1)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: 
## score ~ age + gender + bmi + digestive_surgery + prior_incomplete_colonoscopy +  
##     hernia + ambulatory_hospitalised + preparation + schedule +  
##     veda_vcc_conjunta + time_entrance + first_operator_type +  
##     boston + pain + consumption_propofol_mg + (1 | institution)
## data:    db_imp
## 
##  link  threshold nobs logLik   AIC     niter      max.grad cond.H 
##  logit flexible  2111 -2630.19 5306.39 2966(8908) 6.02e-02 3.0e+06
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  institution (Intercept) 0.7179   0.8473  
## Number of groups:  institution 15 
## 
## Coefficients:
##                                        Estimate Std. Error z value Pr(>|z|)    
## age                                   0.0105968  0.0032929   3.218 0.001290 ** 
## gendermujer                           0.5642618  0.0882917   6.391 1.65e-10 ***
## bmi                                  -0.0189089  0.0087236  -2.168 0.030193 *  
## digestive_surgerysi                   0.0896264  0.0890721   1.006 0.314308    
## prior_incomplete_colonoscopysi        0.5388540  0.2434102   2.214 0.026845 *  
## herniasi                              0.5235816  0.2705529   1.935 0.052962 .  
## ambulatory_hospitalisedhospitalizado -0.1863637  0.4366797  -0.427 0.669544    
## preparationsulfodom                   0.2159312  0.1497043   1.442 0.149194    
## preparationfosfodom                   0.1255666  0.2186189   0.574 0.565722    
## preparationotra                      -0.2174610  0.1721974  -1.263 0.206640    
## scheduletarde                         0.3453170  0.0981284   3.519 0.000433 ***
## veda_vcc_conjuntasi                   0.0573270  0.0876782   0.654 0.513219    
## time_entrance                         0.0467090  0.0121136   3.856 0.000115 ***
## first_operator_typeexperto           -0.6303601  0.1492341  -4.224 2.40e-05 ***
## bostonExcelente                      -0.3731071  0.0978637  -3.813 0.000138 ***
## painmoderado                          0.7072724  0.1480344   4.778 1.77e-06 ***
## painsevero                            0.2935123  0.7044343   0.417 0.676924    
## consumption_propofol_mg               0.0028458  0.0006159   4.621 3.82e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2   0.3746     0.4405   0.850
## 2|3   2.0089     0.4427   4.538
## 3|4   3.0338     0.4455   6.811
## 4|5   4.7055     0.4568  10.302
exp(coef(model1))
##                                  1|2                                  2|3 
##                            1.4543558                            7.4554220 
##                                  3|4                                  4|5 
##                           20.7760620                          110.5567899 
##                                  age                          gendermujer 
##                            1.0106532                            1.7581494 
##                                  bmi                  digestive_surgerysi 
##                            0.9812688                            1.0937656 
##       prior_incomplete_colonoscopysi                             herniasi 
##                            1.7140415                            1.6880629 
## ambulatory_hospitalisedhospitalizado                  preparationsulfodom 
##                            0.8299717                            1.2410170 
##                  preparationfosfodom                      preparationotra 
##                            1.1337906                            0.8045589 
##                        scheduletarde                  veda_vcc_conjuntasi 
##                            1.4124376                            1.0590020 
##                        time_entrance           first_operator_typeexperto 
##                            1.0478170                            0.5324001 
##                      bostonExcelente                         painmoderado 
##                            0.6885915                            2.0284508 
##                           painsevero              consumption_propofol_mg 
##                            1.3411297                            1.0028499
exp(confint(model1))
##                                           2.5 %      97.5 %
## 1|2                                   0.6133562   3.4484870
## 2|3                                   3.1307529  17.7539777
## 3|4                                   8.6774588  49.7432208
## 4|5                                  45.1639081 270.6321111
## age                                   1.0041515   1.0171969
## gendermujer                           1.4787738   2.0903057
## bmi                                   0.9646336   0.9981907
## digestive_surgerysi                   0.9185566   1.3023945
## prior_incomplete_colonoscopysi        1.0637271   2.7619287
## herniasi                              0.9933301   2.8686901
## ambulatory_hospitalisedhospitalizado  0.3526638   1.9532852
## preparationsulfodom                   0.9254420   1.6642030
## preparationfosfodom                   0.7386592   1.7402900
## preparationotra                       0.5740942   1.1275416
## scheduletarde                         1.1653120   1.7119708
## veda_vcc_conjuntasi                   0.8917948   1.2575598
## time_entrance                         1.0232325   1.0729922
## first_operator_typeexperto            0.3973835   0.7132905
## bostonExcelente                       0.5684076   0.8341870
## painmoderado                          1.5176002   2.7112626
## painsevero                            0.3371749   5.3344093
## consumption_propofol_mg               1.0016400   1.0040611
sf <- function(y){
c('y>=1' = qlogis(mean(y >= 1)),
'y>=2' = qlogis(mean(y >= 2)),
'y>=3' = qlogis(mean(y >= 3)),
'y>=4' = qlogis(mean(y >= 4)),
'y>=5' = qlogis(mean(y >= 5)))
}

supuestos_model1 <- with(db_imp,summary(as.numeric(score) ~ age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+hernia+ambulatory_hospitalised+preparation+schedule+veda_vcc_conjunta+time_entrance+first_operator_type+boston+pain+consumption_propofol_mg, fun=sf))

supuestos_model1
## as.numeric(score)      N= 2111  
## 
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                            |             |   N|y>=1|       y>=2|      y>=3|      y>=4|     y>=5|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                         age|     [18, 50)| 532| Inf| 0.35713146|-0.9255195|-1.8870696|-3.610918|
## |                            |     [50, 59)| 538| Inf| 0.40701430|-0.9046099|-1.7302342|-2.902206|
## |                            |     [59, 69)| 527| Inf| 0.27883246|-0.9403239|-1.5274429|-3.463781|
## |                            |     [69,101]| 514| Inf| 0.77603484|-0.4265869|-1.4083271|-2.816853|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      gender|       hombre| 965| Inf| 0.09333194|-1.1847629|-1.8959288|-3.309899|
## |                            |        mujer|1146| Inf| 0.76872986|-0.5061745|-1.4372467|-3.026390|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                         bmi|  [15.2,24.2)| 543| Inf| 0.76870759|-0.4688067|-1.4640721|-3.164708|
## |                            |  [24.2,26.8)| 515| Inf| 0.31719613|-0.9951152|-1.8169037|-3.506558|
## |                            |  [26.8,29.7)| 527| Inf| 0.30985593|-0.9974163|-1.9095425|-2.999724|
## |                            |  [29.7,64.5]| 526| Inf| 0.40071451|-0.7653286|-1.4006144|-2.997730|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |           digestive_surgery|           no|1199| Inf| 0.36945014|-0.9391723|-1.8422903|-3.392614|
## |                            |           si| 912| Inf| 0.55315999|-0.6151856|-1.3890378|-2.890372|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |prior_incomplete_colonoscopy|           no|2047| Inf| 0.43158904|-0.8266786|-1.6674165|-3.215325|
## |                            |           si|  64| Inf| 1.01693426| 0.1251631|-0.7166777|-1.945910|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      hernia|           no|2063| Inf| 0.43219817|-0.8195215|-1.6513196|-3.147190|
## |                            |           si|  48| Inf| 1.21302264| 0.1670541|-0.8873032|-3.135494|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |     ambulatory_hospitalised|  ambulatorio|2087| Inf| 0.45725272|-0.7911071|-1.6296991|-3.159251|
## |                            |hospitalizado|  24| Inf|-0.33647224|-1.0986123|-1.6094379|-2.397895|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                 preparation|        barex|1227| Inf| 0.54619277|-0.7449467|-1.7033040|-3.499030|
## |                            |     sulfodom| 257| Inf| 1.66170634|-0.1168643|-1.0423315|-2.780888|
## |                            |     fosfodom| 267| Inf| 0.65962449|-0.5449312|-1.1543229|-2.270062|
## |                            |         otra| 360| Inf|-0.70567344|-1.9977017|-2.5530445|-3.457177|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                    schedule|       mañana|1384| Inf| 0.44658336|-0.6715481|-1.5071713|-3.129479|
## |                            |        tarde| 727| Inf| 0.45037766|-1.0461115|-1.8950125|-3.180923|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |           veda_vcc_conjunta|           no|1187| Inf| 0.48261690|-0.6805367|-1.7349315|-3.211019|
## |                            |           si| 924| Inf| 0.40366168|-0.9483301|-1.5040774|-3.069753|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |               time_entrance|[0.617, 3.37)| 561| Inf|-0.04635411|-1.3121864|-2.1795250|-3.350827|
## |                            |[3.367, 4.85)| 495| Inf| 0.34687094|-1.0638959|-1.9072250|-3.167583|
## |                            |[4.850, 7.00)| 529| Inf| 0.61198377|-0.7130625|-1.5063895|-3.046505|
## |                            |[7.000,38.80]| 526| Inf| 0.96606563|-0.1983665|-1.1241239|-3.040546|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |         first_operator_type|       junior| 249| Inf| 1.43210390| 0.5172565|-0.7112746|-4.114964|
## |                            |      experto|1862| Inf| 0.33831386|-0.9993689|-1.8005590|-3.064966|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      boston|        Bueno| 904| Inf| 0.95612419|-0.4082314|-1.1768477|-2.493325|
## |                            |    Excelente|1207| Inf| 0.10448601|-1.1241834|-2.0887961|-4.190496|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                        pain|         leve|1896| Inf| 0.31264870|-0.9441477|-1.7529196|-3.122365|
## |                            |     moderado| 210| Inf| 2.14539951| 0.3266842|-0.7801586|-3.367296|
## |                            |       severo|   5| Inf|        Inf| 1.3862944|      -Inf|     -Inf|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |     consumption_propofol_mg|    [ 15,162)| 540| Inf| 0.54654371|-0.8561318|-1.6637499|-2.833213|
## |                            |    [162,202)| 773| Inf| 0.54338825|-0.9217305|-1.8503278|-3.175362|
## |                            |    [202,260)| 282| Inf| 0.15634607|-0.9614112|-1.4868356|-3.533687|
## |                            |    [260,800]| 516| Inf| 0.36845364|-0.4737844|-1.3887186|-3.320228|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                     Overall|             |2111| Inf| 0.44788971|-0.7943896|-1.6294672|-3.146923|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
supuestos_model1[, 6] <- supuestos_model1[, 6] - supuestos_model1[, 5]
supuestos_model1[, 5] <- supuestos_model1[, 5] - supuestos_model1[, 4]
supuestos_model1[, 4] <- supuestos_model1[, 4] - supuestos_model1[, 3]
supuestos_model1[, 3] <- supuestos_model1[, 3] - supuestos_model1[, 3]
supuestos_model1 
## as.numeric(score)      N= 2111  
## 
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                            |             |   N|y>=1|y>=2|      y>=3|      y>=4|      y>=5|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                         age|     [18, 50)| 532| Inf|   0|-1.2826510|-0.9615501|-1.7238483|
## |                            |     [50, 59)| 538| Inf|   0|-1.3116242|-0.8256244|-1.1719720|
## |                            |     [59, 69)| 527| Inf|   0|-1.2191564|-0.5871190|-1.9363379|
## |                            |     [69,101]| 514| Inf|   0|-1.2026218|-0.9817401|-1.4085260|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      gender|       hombre| 965| Inf|   0|-1.2780949|-0.7111659|-1.4139700|
## |                            |        mujer|1146| Inf|   0|-1.2749043|-0.9310722|-1.5891429|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                         bmi|  [15.2,24.2)| 543| Inf|   0|-1.2375143|-0.9952653|-1.7006355|
## |                            |  [24.2,26.8)| 515| Inf|   0|-1.3123113|-0.8217884|-1.6896542|
## |                            |  [26.8,29.7)| 527| Inf|   0|-1.3072722|-0.9121262|-1.0901818|
## |                            |  [29.7,64.5]| 526| Inf|   0|-1.1660431|-0.6352858|-1.5971159|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |           digestive_surgery|           no|1199| Inf|   0|-1.3086225|-0.9031179|-1.5503234|
## |                            |           si| 912| Inf|   0|-1.1683456|-0.7738522|-1.5013339|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |prior_incomplete_colonoscopy|           no|2047| Inf|   0|-1.2582676|-0.8407379|-1.5479087|
## |                            |           si|  64| Inf|   0|-0.8917711|-0.8418408|-1.2292325|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      hernia|           no|2063| Inf|   0|-1.2517197|-0.8317981|-1.4958707|
## |                            |           si|  48| Inf|   0|-1.0459686|-1.0543573|-2.2481910|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |     ambulatory_hospitalised|  ambulatorio|2087| Inf|   0|-1.2483598|-0.8385920|-1.5295516|
## |                            |hospitalizado|  24| Inf|   0|-0.7621401|-0.5108256|-0.7884574|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                 preparation|        barex|1227| Inf|   0|-1.2911394|-0.9583574|-1.7957256|
## |                            |     sulfodom| 257| Inf|   0|-1.7785707|-0.9254671|-1.7385561|
## |                            |     fosfodom| 267| Inf|   0|-1.2045557|-0.6093917|-1.1157390|
## |                            |         otra| 360| Inf|   0|-1.2920282|-0.5553428|-0.9041322|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                    schedule|       mañana|1384| Inf|   0|-1.1181314|-0.8356233|-1.6223078|
## |                            |        tarde| 727| Inf|   0|-1.4964892|-0.8489010|-1.2859108|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |           veda_vcc_conjunta|           no|1187| Inf|   0|-1.1631536|-1.0543948|-1.4760875|
## |                            |           si| 924| Inf|   0|-1.3519918|-0.5557473|-1.5656757|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |               time_entrance|[0.617, 3.37)| 561| Inf|   0|-1.2658323|-0.8673386|-1.1713020|
## |                            |[3.367, 4.85)| 495| Inf|   0|-1.4107668|-0.8433292|-1.2603575|
## |                            |[4.850, 7.00)| 529| Inf|   0|-1.3250463|-0.7933270|-1.5401151|
## |                            |[7.000,38.80]| 526| Inf|   0|-1.1644322|-0.9257573|-1.9164224|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |         first_operator_type|       junior| 249| Inf|   0|-0.9148474|-1.2285311|-3.4036893|
## |                            |      experto|1862| Inf|   0|-1.3376828|-0.8011901|-1.2644071|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      boston|        Bueno| 904| Inf|   0|-1.3643556|-0.7686163|-1.3164776|
## |                            |    Excelente|1207| Inf|   0|-1.2286695|-0.9646127|-2.1017000|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                        pain|         leve|1896| Inf|   0|-1.2567964|-0.8087719|-1.3694453|
## |                            |     moderado| 210| Inf|   0|-1.8187153|-1.1068428|-2.5871373|
## |                            |       severo|   5| Inf|    |      -Inf|      -Inf|          |
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |     consumption_propofol_mg|    [ 15,162)| 540| Inf|   0|-1.4026755|-0.8076181|-1.1694634|
## |                            |    [162,202)| 773| Inf|   0|-1.4651187|-0.9285974|-1.3250342|
## |                            |    [202,260)| 282| Inf|   0|-1.1177572|-0.5254244|-2.0468510|
## |                            |    [260,800]| 516| Inf|   0|-0.8422380|-0.9149343|-1.9315097|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                     Overall|             |2111| Inf|   0|-1.2422793|-0.8350776|-1.5174557|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
plot(supuestos_model1, which=1:5,pch=1:5,xlab='logit', main=' ', xlim=range(supuestos_model1[,3:6],finite=T))

#hace un grafico por variable, otra forma de chequear supuestos
plot(pomcheck(score~age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+ambulatory_hospitalised+preparation+schedule+veda_vcc_conjunta+time_entrance+first_operator_type+boston, data=db_imp[,-7]))

Vemos otro modelo (2) sacando las variables VEDA/vcc conjunta y preparation segun ordinalforest

model2 <- clmm(score~age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+hernia+ambulatory_hospitalised+ schedule +time_entrance+first_operator_type+boston+pain+consumption_propofol_mg + (1|institution),data=db_imp, Hess=T )

summary(model2)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: 
## score ~ age + gender + bmi + digestive_surgery + prior_incomplete_colonoscopy +  
##     hernia + ambulatory_hospitalised + schedule + time_entrance +  
##     first_operator_type + boston + pain + consumption_propofol_mg +  
##     (1 | institution)
## data:    db_imp
## 
##  link  threshold nobs logLik   AIC     niter      max.grad cond.H 
##  logit flexible  2111 -2632.69 5303.39 2293(6891) 1.31e-01 2.9e+06
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  institution (Intercept) 0.8078   0.8988  
## Number of groups:  institution 15 
## 
## Coefficients:
##                                        Estimate Std. Error z value Pr(>|z|)    
## age                                   0.0109266  0.0032651   3.346 0.000819 ***
## gendermujer                           0.5777703  0.0878123   6.580 4.72e-11 ***
## bmi                                  -0.0187299  0.0087018  -2.152 0.031365 *  
## digestive_surgerysi                   0.0858313  0.0889481   0.965 0.334565    
## prior_incomplete_colonoscopysi        0.5220291  0.2427858   2.150 0.031542 *  
## herniasi                              0.5344718  0.2705275   1.976 0.048193 *  
## ambulatory_hospitalisedhospitalizado -0.1411367  0.4366008  -0.323 0.746496    
## scheduletarde                         0.3324472  0.0978753   3.397 0.000682 ***
## time_entrance                         0.0468492  0.0121241   3.864 0.000111 ***
## first_operator_typeexperto           -0.6498313  0.1470056  -4.420 9.85e-06 ***
## bostonExcelente                      -0.3835957  0.0976899  -3.927 8.61e-05 ***
## painmoderado                          0.6755501  0.1461668   4.622 3.80e-06 ***
## painsevero                            0.3143450  0.7013534   0.448 0.654011    
## consumption_propofol_mg               0.0028905  0.0006155   4.696 2.65e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2   0.3425     0.4390   0.780
## 2|3   1.9744     0.4411   4.476
## 3|4   2.9981     0.4437   6.757
## 4|5   4.6699     0.4549  10.266
exp(confint(model2))
##                                           2.5 %      97.5 %
## 1|2                                   0.5957967   3.3295614
## 2|3                                   3.0341101  17.0960921
## 3|4                                   8.4021180  47.8313237
## 4|5                                  43.7450025 260.2063735
## age                                   1.0045373   1.0174771
## gendermujer                           1.5002944   2.1167446
## bmi                                   0.9648476   0.9983267
## digestive_surgerysi                   0.9152997   1.2971457
## prior_incomplete_colonoscopysi        1.0472605   2.7125267
## herniasi                              1.0042567   2.8999568
## ambulatory_hospitalisedhospitalizado  0.3690370   2.0433387
## scheduletarde                         1.1509817   1.6892407
## time_entrance                         1.0233551   1.0731647
## first_operator_typeexperto            0.3914267   0.6964873
## bostonExcelente                       0.5626686   0.8252020
## painmoderado                          1.4756055   2.6170084
## painsevero                            0.3463580   5.4139147
## consumption_propofol_mg               1.0016856   1.0041052
sf2 <- function(y){
c('y>=1' = qlogis(mean(y >= 1)),
'y>=2' = qlogis(mean(y >= 2)),
'y>=3' = qlogis(mean(y >= 3)),
'y>=4' = qlogis(mean(y >= 4)),
'y>=5' = qlogis(mean(y >= 5)))
}


supuestos_model2 <- with(db_imp,summary(as.numeric(score) ~ age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+hernia+ambulatory_hospitalised+schedule+time_entrance+first_operator_type+boston+pain+consumption_propofol_mg, fun=sf2))

supuestos_model2
## as.numeric(score)      N= 2111  
## 
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                            |             |   N|y>=1|       y>=2|      y>=3|      y>=4|     y>=5|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                         age|     [18, 50)| 532| Inf| 0.35713146|-0.9255195|-1.8870696|-3.610918|
## |                            |     [50, 59)| 538| Inf| 0.40701430|-0.9046099|-1.7302342|-2.902206|
## |                            |     [59, 69)| 527| Inf| 0.27883246|-0.9403239|-1.5274429|-3.463781|
## |                            |     [69,101]| 514| Inf| 0.77603484|-0.4265869|-1.4083271|-2.816853|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      gender|       hombre| 965| Inf| 0.09333194|-1.1847629|-1.8959288|-3.309899|
## |                            |        mujer|1146| Inf| 0.76872986|-0.5061745|-1.4372467|-3.026390|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                         bmi|  [15.2,24.2)| 543| Inf| 0.76870759|-0.4688067|-1.4640721|-3.164708|
## |                            |  [24.2,26.8)| 515| Inf| 0.31719613|-0.9951152|-1.8169037|-3.506558|
## |                            |  [26.8,29.7)| 527| Inf| 0.30985593|-0.9974163|-1.9095425|-2.999724|
## |                            |  [29.7,64.5]| 526| Inf| 0.40071451|-0.7653286|-1.4006144|-2.997730|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |           digestive_surgery|           no|1199| Inf| 0.36945014|-0.9391723|-1.8422903|-3.392614|
## |                            |           si| 912| Inf| 0.55315999|-0.6151856|-1.3890378|-2.890372|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |prior_incomplete_colonoscopy|           no|2047| Inf| 0.43158904|-0.8266786|-1.6674165|-3.215325|
## |                            |           si|  64| Inf| 1.01693426| 0.1251631|-0.7166777|-1.945910|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      hernia|           no|2063| Inf| 0.43219817|-0.8195215|-1.6513196|-3.147190|
## |                            |           si|  48| Inf| 1.21302264| 0.1670541|-0.8873032|-3.135494|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |     ambulatory_hospitalised|  ambulatorio|2087| Inf| 0.45725272|-0.7911071|-1.6296991|-3.159251|
## |                            |hospitalizado|  24| Inf|-0.33647224|-1.0986123|-1.6094379|-2.397895|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                    schedule|       mañana|1384| Inf| 0.44658336|-0.6715481|-1.5071713|-3.129479|
## |                            |        tarde| 727| Inf| 0.45037766|-1.0461115|-1.8950125|-3.180923|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |               time_entrance|[0.617, 3.37)| 561| Inf|-0.04635411|-1.3121864|-2.1795250|-3.350827|
## |                            |[3.367, 4.85)| 495| Inf| 0.34687094|-1.0638959|-1.9072250|-3.167583|
## |                            |[4.850, 7.00)| 529| Inf| 0.61198377|-0.7130625|-1.5063895|-3.046505|
## |                            |[7.000,38.80]| 526| Inf| 0.96606563|-0.1983665|-1.1241239|-3.040546|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |         first_operator_type|       junior| 249| Inf| 1.43210390| 0.5172565|-0.7112746|-4.114964|
## |                            |      experto|1862| Inf| 0.33831386|-0.9993689|-1.8005590|-3.064966|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      boston|        Bueno| 904| Inf| 0.95612419|-0.4082314|-1.1768477|-2.493325|
## |                            |    Excelente|1207| Inf| 0.10448601|-1.1241834|-2.0887961|-4.190496|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                        pain|         leve|1896| Inf| 0.31264870|-0.9441477|-1.7529196|-3.122365|
## |                            |     moderado| 210| Inf| 2.14539951| 0.3266842|-0.7801586|-3.367296|
## |                            |       severo|   5| Inf|        Inf| 1.3862944|      -Inf|     -Inf|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |     consumption_propofol_mg|    [ 15,162)| 540| Inf| 0.54654371|-0.8561318|-1.6637499|-2.833213|
## |                            |    [162,202)| 773| Inf| 0.54338825|-0.9217305|-1.8503278|-3.175362|
## |                            |    [202,260)| 282| Inf| 0.15634607|-0.9614112|-1.4868356|-3.533687|
## |                            |    [260,800]| 516| Inf| 0.36845364|-0.4737844|-1.3887186|-3.320228|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                     Overall|             |2111| Inf| 0.44788971|-0.7943896|-1.6294672|-3.146923|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
supuestos_model2[, 6] <- supuestos_model2[, 6] - supuestos_model2[, 5]
supuestos_model2[, 5] <- supuestos_model2[, 5] - supuestos_model2[, 4]
supuestos_model2[, 4] <- supuestos_model2[, 4] - supuestos_model2[, 3]
supuestos_model2[, 3] <- supuestos_model2[, 3] - supuestos_model2[, 3]
supuestos_model2
## as.numeric(score)      N= 2111  
## 
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                            |             |   N|y>=1|y>=2|      y>=3|      y>=4|      y>=5|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                         age|     [18, 50)| 532| Inf|   0|-1.2826510|-0.9615501|-1.7238483|
## |                            |     [50, 59)| 538| Inf|   0|-1.3116242|-0.8256244|-1.1719720|
## |                            |     [59, 69)| 527| Inf|   0|-1.2191564|-0.5871190|-1.9363379|
## |                            |     [69,101]| 514| Inf|   0|-1.2026218|-0.9817401|-1.4085260|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      gender|       hombre| 965| Inf|   0|-1.2780949|-0.7111659|-1.4139700|
## |                            |        mujer|1146| Inf|   0|-1.2749043|-0.9310722|-1.5891429|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                         bmi|  [15.2,24.2)| 543| Inf|   0|-1.2375143|-0.9952653|-1.7006355|
## |                            |  [24.2,26.8)| 515| Inf|   0|-1.3123113|-0.8217884|-1.6896542|
## |                            |  [26.8,29.7)| 527| Inf|   0|-1.3072722|-0.9121262|-1.0901818|
## |                            |  [29.7,64.5]| 526| Inf|   0|-1.1660431|-0.6352858|-1.5971159|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |           digestive_surgery|           no|1199| Inf|   0|-1.3086225|-0.9031179|-1.5503234|
## |                            |           si| 912| Inf|   0|-1.1683456|-0.7738522|-1.5013339|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |prior_incomplete_colonoscopy|           no|2047| Inf|   0|-1.2582676|-0.8407379|-1.5479087|
## |                            |           si|  64| Inf|   0|-0.8917711|-0.8418408|-1.2292325|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      hernia|           no|2063| Inf|   0|-1.2517197|-0.8317981|-1.4958707|
## |                            |           si|  48| Inf|   0|-1.0459686|-1.0543573|-2.2481910|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |     ambulatory_hospitalised|  ambulatorio|2087| Inf|   0|-1.2483598|-0.8385920|-1.5295516|
## |                            |hospitalizado|  24| Inf|   0|-0.7621401|-0.5108256|-0.7884574|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                    schedule|       mañana|1384| Inf|   0|-1.1181314|-0.8356233|-1.6223078|
## |                            |        tarde| 727| Inf|   0|-1.4964892|-0.8489010|-1.2859108|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |               time_entrance|[0.617, 3.37)| 561| Inf|   0|-1.2658323|-0.8673386|-1.1713020|
## |                            |[3.367, 4.85)| 495| Inf|   0|-1.4107668|-0.8433292|-1.2603575|
## |                            |[4.850, 7.00)| 529| Inf|   0|-1.3250463|-0.7933270|-1.5401151|
## |                            |[7.000,38.80]| 526| Inf|   0|-1.1644322|-0.9257573|-1.9164224|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |         first_operator_type|       junior| 249| Inf|   0|-0.9148474|-1.2285311|-3.4036893|
## |                            |      experto|1862| Inf|   0|-1.3376828|-0.8011901|-1.2644071|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      boston|        Bueno| 904| Inf|   0|-1.3643556|-0.7686163|-1.3164776|
## |                            |    Excelente|1207| Inf|   0|-1.2286695|-0.9646127|-2.1017000|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                        pain|         leve|1896| Inf|   0|-1.2567964|-0.8087719|-1.3694453|
## |                            |     moderado| 210| Inf|   0|-1.8187153|-1.1068428|-2.5871373|
## |                            |       severo|   5| Inf|    |      -Inf|      -Inf|          |
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |     consumption_propofol_mg|    [ 15,162)| 540| Inf|   0|-1.4026755|-0.8076181|-1.1694634|
## |                            |    [162,202)| 773| Inf|   0|-1.4651187|-0.9285974|-1.3250342|
## |                            |    [202,260)| 282| Inf|   0|-1.1177572|-0.5254244|-2.0468510|
## |                            |    [260,800]| 516| Inf|   0|-0.8422380|-0.9149343|-1.9315097|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                     Overall|             |2111| Inf|   0|-1.2422793|-0.8350776|-1.5174557|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
plot(supuestos_model2, which=1:5,pch=1:5,xlab='logit', main=' ', xlim=range(supuestos_model2[,3:6], finite=T))

Modelo (3) sin las variables VEDA/vcc conjunta, preparation, cirugia digestiva

model3 <- clmm(score~age+gender+bmi+prior_incomplete_colonoscopy+schedule+first_operator_type+boston+pain+hernia+time_entrance+ambulatory_hospitalised+consumption_propofol_mg+(1|institution),data=db_imp)

summary(model3)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## formula: 
## score ~ age + gender + bmi + prior_incomplete_colonoscopy + schedule +  
##     first_operator_type + boston + pain + hernia + time_entrance +  
##     ambulatory_hospitalised + consumption_propofol_mg + (1 |      institution)
## data:    db_imp
## 
##  link  threshold nobs logLik   AIC     niter      max.grad cond.H 
##  logit flexible  2111 -2633.16 5302.32 2158(6486) 1.62e-02 2.9e+06
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  institution (Intercept) 0.8073   0.8985  
## Number of groups:  institution 15 
## 
## Coefficients:
##                                       Estimate Std. Error z value Pr(>|z|)    
## age                                   0.011334   0.003238   3.501 0.000464 ***
## gendermujer                           0.596254   0.085718   6.956 3.50e-12 ***
## bmi                                  -0.017995   0.008665  -2.077 0.037829 *  
## prior_incomplete_colonoscopysi        0.530696   0.242714   2.187 0.028779 *  
## scheduletarde                         0.324207   0.097489   3.326 0.000882 ***
## first_operator_typeexperto           -0.657845   0.146766  -4.482 7.38e-06 ***
## bostonExcelente                      -0.382784   0.097677  -3.919 8.90e-05 ***
## painmoderado                          0.683620   0.145965   4.683 2.82e-06 ***
## painsevero                            0.304987   0.700005   0.436 0.663060    
## herniasi                              0.546835   0.270722   2.020 0.043392 *  
## time_entrance                         0.047036   0.012119   3.881 0.000104 ***
## ambulatory_hospitalisedhospitalizado -0.146329   0.436350  -0.335 0.737364    
## consumption_propofol_mg               0.002852   0.000614   4.644 3.41e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2   0.3445     0.4389   0.785
## 2|3   1.9760     0.4410   4.481
## 3|4   2.9994     0.4436   6.761
## 4|5   4.6708     0.4548  10.269
exp(coef(model3))
##                                  1|2                                  2|3 
##                            1.4113303                            7.2137073 
##                                  3|4                                  4|5 
##                           20.0729810                          106.7848106 
##                                  age                          gendermujer 
##                            1.0113989                            1.8153066 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            0.9821659                            1.7001151 
##                        scheduletarde           first_operator_typeexperto 
##                            1.3829336                            0.5179664 
##                      bostonExcelente                         painmoderado 
##                            0.6819603                            1.9810364 
##                           painsevero                             herniasi 
##                            1.3566071                            1.7277765 
##                        time_entrance ambulatory_hospitalisedhospitalizado 
##                            1.0481600                            0.8638739 
##              consumption_propofol_mg 
##                            1.0028558
exp(confint(model3))
##                                           2.5 %      97.5 %
## 1|2                                   0.5970799   3.3359913
## 2|3                                   3.0392452  17.1218737
## 3|4                                   8.4137474  47.8888358
## 4|5                                  43.7865601 260.4222791
## age                                   1.0050009   1.0178376
## gendermujer                           1.5345698   2.1474019
## bmi                                   0.9656262   0.9989889
## prior_incomplete_colonoscopysi        1.0565247   2.7357538
## scheduletarde                         1.1424005   1.6741111
## first_operator_typeexperto            0.3884852   0.6906034
## bostonExcelente                       0.5631402   0.8258510
## painmoderado                          1.4881507   2.6371694
## painsevero                            0.3440400   5.3493279
## herniasi                              1.0163625   2.9371525
## time_entrance                         1.0235561   1.0733553
## ambulatory_hospitalisedhospitalizado  0.3673062   2.0317604
## consumption_propofol_mg               1.0016496   1.0040633
sf3 <- function(y){
c('y>=1' = qlogis(mean(y >= 1)),
'y>=2' = qlogis(mean(y >= 2)),
'y>=3' = qlogis(mean(y >= 3)),
'y>=4' = qlogis(mean(y >= 4)),
'y>=5' = qlogis(mean(y >= 5)))
}

supuestos_model3 <- with(db_imp,summary(as.numeric(score) ~ age+gender+bmi+prior_incomplete_colonoscopy+ambulatory_hospitalised+schedule+first_operator_type+boston+pain+hernia+time_entrance+consumption_propofol_mg, fun=sf3))

supuestos_model3
## as.numeric(score)      N= 2111  
## 
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                            |             |   N|y>=1|       y>=2|      y>=3|      y>=4|     y>=5|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                         age|     [18, 50)| 532| Inf| 0.35713146|-0.9255195|-1.8870696|-3.610918|
## |                            |     [50, 59)| 538| Inf| 0.40701430|-0.9046099|-1.7302342|-2.902206|
## |                            |     [59, 69)| 527| Inf| 0.27883246|-0.9403239|-1.5274429|-3.463781|
## |                            |     [69,101]| 514| Inf| 0.77603484|-0.4265869|-1.4083271|-2.816853|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      gender|       hombre| 965| Inf| 0.09333194|-1.1847629|-1.8959288|-3.309899|
## |                            |        mujer|1146| Inf| 0.76872986|-0.5061745|-1.4372467|-3.026390|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                         bmi|  [15.2,24.2)| 543| Inf| 0.76870759|-0.4688067|-1.4640721|-3.164708|
## |                            |  [24.2,26.8)| 515| Inf| 0.31719613|-0.9951152|-1.8169037|-3.506558|
## |                            |  [26.8,29.7)| 527| Inf| 0.30985593|-0.9974163|-1.9095425|-2.999724|
## |                            |  [29.7,64.5]| 526| Inf| 0.40071451|-0.7653286|-1.4006144|-2.997730|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |prior_incomplete_colonoscopy|           no|2047| Inf| 0.43158904|-0.8266786|-1.6674165|-3.215325|
## |                            |           si|  64| Inf| 1.01693426| 0.1251631|-0.7166777|-1.945910|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |     ambulatory_hospitalised|  ambulatorio|2087| Inf| 0.45725272|-0.7911071|-1.6296991|-3.159251|
## |                            |hospitalizado|  24| Inf|-0.33647224|-1.0986123|-1.6094379|-2.397895|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                    schedule|       mañana|1384| Inf| 0.44658336|-0.6715481|-1.5071713|-3.129479|
## |                            |        tarde| 727| Inf| 0.45037766|-1.0461115|-1.8950125|-3.180923|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |         first_operator_type|       junior| 249| Inf| 1.43210390| 0.5172565|-0.7112746|-4.114964|
## |                            |      experto|1862| Inf| 0.33831386|-0.9993689|-1.8005590|-3.064966|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      boston|        Bueno| 904| Inf| 0.95612419|-0.4082314|-1.1768477|-2.493325|
## |                            |    Excelente|1207| Inf| 0.10448601|-1.1241834|-2.0887961|-4.190496|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                        pain|         leve|1896| Inf| 0.31264870|-0.9441477|-1.7529196|-3.122365|
## |                            |     moderado| 210| Inf| 2.14539951| 0.3266842|-0.7801586|-3.367296|
## |                            |       severo|   5| Inf|        Inf| 1.3862944|      -Inf|     -Inf|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                      hernia|           no|2063| Inf| 0.43219817|-0.8195215|-1.6513196|-3.147190|
## |                            |           si|  48| Inf| 1.21302264| 0.1670541|-0.8873032|-3.135494|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |               time_entrance|[0.617, 3.37)| 561| Inf|-0.04635411|-1.3121864|-2.1795250|-3.350827|
## |                            |[3.367, 4.85)| 495| Inf| 0.34687094|-1.0638959|-1.9072250|-3.167583|
## |                            |[4.850, 7.00)| 529| Inf| 0.61198377|-0.7130625|-1.5063895|-3.046505|
## |                            |[7.000,38.80]| 526| Inf| 0.96606563|-0.1983665|-1.1241239|-3.040546|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |     consumption_propofol_mg|    [ 15,162)| 540| Inf| 0.54654371|-0.8561318|-1.6637499|-2.833213|
## |                            |    [162,202)| 773| Inf| 0.54338825|-0.9217305|-1.8503278|-3.175362|
## |                            |    [202,260)| 282| Inf| 0.15634607|-0.9614112|-1.4868356|-3.533687|
## |                            |    [260,800]| 516| Inf| 0.36845364|-0.4737844|-1.3887186|-3.320228|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
## |                     Overall|             |2111| Inf| 0.44788971|-0.7943896|-1.6294672|-3.146923|
## +----------------------------+-------------+----+----+-----------+----------+----------+---------+
supuestos_model3[, 6] <- supuestos_model3[, 6] - supuestos_model3[, 5]
supuestos_model3[, 5] <- supuestos_model3[, 5] - supuestos_model3[, 4]
supuestos_model3[, 4] <- supuestos_model3[, 4] - supuestos_model3[, 3]
supuestos_model3[, 3] <- supuestos_model3[, 3] - supuestos_model3[, 3]
supuestos_model3
## as.numeric(score)      N= 2111  
## 
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                            |             |   N|y>=1|y>=2|      y>=3|      y>=4|      y>=5|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                         age|     [18, 50)| 532| Inf|   0|-1.2826510|-0.9615501|-1.7238483|
## |                            |     [50, 59)| 538| Inf|   0|-1.3116242|-0.8256244|-1.1719720|
## |                            |     [59, 69)| 527| Inf|   0|-1.2191564|-0.5871190|-1.9363379|
## |                            |     [69,101]| 514| Inf|   0|-1.2026218|-0.9817401|-1.4085260|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      gender|       hombre| 965| Inf|   0|-1.2780949|-0.7111659|-1.4139700|
## |                            |        mujer|1146| Inf|   0|-1.2749043|-0.9310722|-1.5891429|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                         bmi|  [15.2,24.2)| 543| Inf|   0|-1.2375143|-0.9952653|-1.7006355|
## |                            |  [24.2,26.8)| 515| Inf|   0|-1.3123113|-0.8217884|-1.6896542|
## |                            |  [26.8,29.7)| 527| Inf|   0|-1.3072722|-0.9121262|-1.0901818|
## |                            |  [29.7,64.5]| 526| Inf|   0|-1.1660431|-0.6352858|-1.5971159|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |prior_incomplete_colonoscopy|           no|2047| Inf|   0|-1.2582676|-0.8407379|-1.5479087|
## |                            |           si|  64| Inf|   0|-0.8917711|-0.8418408|-1.2292325|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |     ambulatory_hospitalised|  ambulatorio|2087| Inf|   0|-1.2483598|-0.8385920|-1.5295516|
## |                            |hospitalizado|  24| Inf|   0|-0.7621401|-0.5108256|-0.7884574|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                    schedule|       mañana|1384| Inf|   0|-1.1181314|-0.8356233|-1.6223078|
## |                            |        tarde| 727| Inf|   0|-1.4964892|-0.8489010|-1.2859108|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |         first_operator_type|       junior| 249| Inf|   0|-0.9148474|-1.2285311|-3.4036893|
## |                            |      experto|1862| Inf|   0|-1.3376828|-0.8011901|-1.2644071|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      boston|        Bueno| 904| Inf|   0|-1.3643556|-0.7686163|-1.3164776|
## |                            |    Excelente|1207| Inf|   0|-1.2286695|-0.9646127|-2.1017000|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                        pain|         leve|1896| Inf|   0|-1.2567964|-0.8087719|-1.3694453|
## |                            |     moderado| 210| Inf|   0|-1.8187153|-1.1068428|-2.5871373|
## |                            |       severo|   5| Inf|    |      -Inf|      -Inf|          |
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                      hernia|           no|2063| Inf|   0|-1.2517197|-0.8317981|-1.4958707|
## |                            |           si|  48| Inf|   0|-1.0459686|-1.0543573|-2.2481910|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |               time_entrance|[0.617, 3.37)| 561| Inf|   0|-1.2658323|-0.8673386|-1.1713020|
## |                            |[3.367, 4.85)| 495| Inf|   0|-1.4107668|-0.8433292|-1.2603575|
## |                            |[4.850, 7.00)| 529| Inf|   0|-1.3250463|-0.7933270|-1.5401151|
## |                            |[7.000,38.80]| 526| Inf|   0|-1.1644322|-0.9257573|-1.9164224|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |     consumption_propofol_mg|    [ 15,162)| 540| Inf|   0|-1.4026755|-0.8076181|-1.1694634|
## |                            |    [162,202)| 773| Inf|   0|-1.4651187|-0.9285974|-1.3250342|
## |                            |    [202,260)| 282| Inf|   0|-1.1177572|-0.5254244|-2.0468510|
## |                            |    [260,800]| 516| Inf|   0|-0.8422380|-0.9149343|-1.9315097|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
## |                     Overall|             |2111| Inf|   0|-1.2422793|-0.8350776|-1.5174557|
## +----------------------------+-------------+----+----+----+----------+----------+----------+
plot(supuestos_model3, which=1:5,pch=1:5,xlab='logit', main=' ', xlim=range(supuestos_model3[,3:6], finite=TRUE))#

Modelo 4 sin variables VEDA/vcc conjunta, preparation, cirugia digestiva y hernia

model4 <- clmm(score~age+gender+bmi+prior_incomplete_colonoscopy+schedule+first_operator_type+boston+pain+time_entrance+ambulatory_hospitalised+consumption_propofol_mg+(1|institution),data=db_imp)
# model2c <- clmm2(score~age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+hernia+ambulatory_hospitalised+ schedule +time_entrance+first_operator_type+boston+pain+consumption_propofol_mg, random = institution, nominal=~age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+hernia+ambulatory_hospitalised+ schedule +time_entrance+first_operator_type+boston+pain+consumption_propofol_mg, data=db_imp, Hess=T)
# summary(model2c)

#1 - pchisq(2*(logLik(model2c)-logLik(model2_asess)),df=df.residual(model2_asess)-df.residual(model2c))
#o
#anova(model2_asess,model2c)#no cumple segun LRT
compare_performance(model1,model2,model3,model4)#RMSE 2.20 el error es el mismo, AIC no disminuye demasiado con una variable menos (model3), vuelve a aumentar al sacar mas variables en model 4, continuamos con el modelo2 por ahora
## # Comparison of Model Performance Indices
## 
## Name   | Model |  AIC (weights) |  BIC (weights) |  RMSE | Sigma
## ----------------------------------------------------------------
## model1 |  clmm | 5306.4 (0.063) | 5436.5 (<.001) | 2.207 | 1.814
## model2 |  clmm | 5303.4 (0.282) | 5410.8 (0.005) | 2.208 | 1.814
## model3 |  clmm | 5302.3 (0.481) | 5404.1 (0.139) | 2.208 | 1.814
## model4 |  clmm | 5304.3 (0.175) | 5400.5 (0.856) | 2.208 | 1.814
# Predict values of the ordinal target variable in the test dataset:
preds <- predict(ordforres, newdata=datatest)

perf<-perff_equal(ytest=datatest$score, ytestpred=as.ordered(preds$ypred))
#estadistico Youden 0.144 en promedio

#matriz de confusion
caret::confusionMatrix(preds$ypred, datatest$score)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2   3   4   5
##          1 237 139  50  34  14
##          2  14  31  16  15   2
##          3   7  11  13   5   1
##          4  13  31  26  35   9
##          5   0   0   0   1   0
## 
## Overall Statistics
##                                           
##                Accuracy : 0.4489          
##                  95% CI : (0.4117, 0.4865)
##     No Information Rate : 0.3849          
##     P-Value [Acc > NIR] : 0.0003137       
##                                           
##                   Kappa : 0.1881          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
## 
## Statistics by Class:
## 
##                      Class: 1 Class: 2 Class: 3 Class: 4 Class: 5
## Sensitivity            0.8745  0.14623  0.12381  0.38889  0.00000
## Specificity            0.4527  0.90447  0.95993  0.87134  0.99853
## Pos Pred Value         0.5000  0.39744  0.35135  0.30702  0.00000
## Neg Pred Value         0.8522  0.71086  0.86207  0.90678  0.96302
## Prevalence             0.3849  0.30114  0.14915  0.12784  0.03693
## Detection Rate         0.3366  0.04403  0.01847  0.04972  0.00000
## Detection Prevalence   0.6733  0.11080  0.05256  0.16193  0.00142
## Balanced Accuracy      0.6636  0.52535  0.54187  0.63011  0.49926
#accuracy(precision de la clasif en datos de testeo): 0.44
#AUC del modelo mixto para predecir datos de entrenamiento y armar la curva
model2_asess <- clmm2(score~age+gender+bmi+digestive_surgery+prior_incomplete_colonoscopy+hernia+ambulatory_hospitalised+ schedule +time_entrance+first_operator_type+boston+pain+consumption_propofol_mg, random=institution,data=db_imp, Hess=T )
summary(model2_asess)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## Call:
## clmm2(location = score ~ age + gender + bmi + digestive_surgery + 
##     prior_incomplete_colonoscopy + hernia + ambulatory_hospitalised + 
##     schedule + time_entrance + first_operator_type + boston + 
##     pain + consumption_propofol_mg, random = institution, data = db_imp, 
##     Hess = T)
## 
## Random effects:
##                   Var   Std.Dev
## institution 0.8078769 0.8988197
## 
## Location coefficients:
##                                      Estimate Std. Error z value Pr(>|z|)  
## age                                   0.0109   0.0033     3.3467 0.00081767
## gendermujer                           0.5778   0.0878     6.5798 4.7113e-11
## bmi                                  -0.0187   0.0087    -2.1527 0.03134417
## digestive_surgerysi                   0.0858   0.0889     0.9651 0.33451803
## prior_incomplete_colonoscopysi        0.5220   0.2428     2.1503 0.03153205
## herniasi                              0.5344   0.2705     1.9757 0.04819394
## ambulatory_hospitalisedhospitalizado -0.1412   0.4365    -0.3234 0.74639537
## scheduletarde                         0.3325   0.0979     3.3968 0.00068190
## time_entrance                         0.0468   0.0121     3.8642 0.00011143
## first_operator_typeexperto           -0.6498   0.1470    -4.4208 9.8333e-06
## bostonExcelente                      -0.3836   0.0977    -3.9267 8.6114e-05
## painmoderado                          0.6755   0.1462     4.6219 3.8025e-06
## painsevero                            0.3145   0.7012     0.4485 0.65380293
## consumption_propofol_mg               0.0029   0.0006     4.6966 2.6454e-06
## 
## No scale coefficients
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2  0.3425   0.4387     0.7807
## 2|3  1.9744   0.4408     4.4790
## 3|4  2.9981   0.4434     6.7611
## 4|5  4.6699   0.4546    10.2719
## 
## log-likelihood: -2632.693 
## AIC: 5303.386 
## Condition number of Hessian: 2910172.59
exp(coef(model2_asess))
##                                  1|2                                  2|3 
##                            1.4084776                            7.2022915 
##                                  3|4                                  4|5 
##                           20.0474074                          106.6918365 
##                                  age                          gendermujer 
##                            1.0109867                            1.7820583 
##                                  bmi                  digestive_surgerysi 
##                            0.9814445                            1.0896305 
##       prior_incomplete_colonoscopysi                             herniasi 
##                            1.6854338                            1.7065078 
## ambulatory_hospitalisedhospitalizado                        scheduletarde 
##                            0.8683522                            1.3943811 
##                        time_entrance           first_operator_typeexperto 
##                            1.0479646                            0.5221354 
##                      bostonExcelente                         painmoderado 
##                            0.6814078                            1.9651111 
##                           painsevero              consumption_propofol_mg 
##                            1.3695475                            1.0028947 
##                                      
##                            2.4567019
model_predict2 <- predict(model2_asess, newdata=datatest, type="response")

acu2<-multiclass.roc(datatest$score, model_predict2,direction=">", levels=levels(datatest$score),plot=TRUE, print.thres="best", print.auc=T)
acu2$auc
## Multi-class area under the curve: 0.9402
roc.df2<-data.frame(tpp=acu2$rocs[[10]]$sensitivities*100, ## tpp = true positive percentage
  tnp=acu2$rocs[[10]]$specificities*100, ## fpp = false positive precentage
  thresholds=acu2$rocs[[10]]$thresholds)

roc.df2[roc.df2$tpp > 90 & roc.df2$tpp < 95,]#0.027
##         tpp      tnp thresholds
## 33 92.30769 33.33333 0.13269926
## 34 92.30769 34.44444 0.13119126
## 35 92.30769 35.55556 0.12934731
## 36 92.30769 36.66667 0.12705219
## 37 92.30769 37.77778 0.12555203
## 38 92.30769 38.88889 0.12521529
## 39 92.30769 40.00000 0.12506555
## 40 92.30769 41.11111 0.12399661
## 41 92.30769 42.22222 0.12264951
## 42 92.30769 43.33333 0.12218725
## 43 92.30769 44.44444 0.12057833
## 44 92.30769 45.55556 0.11840348
## 45 92.30769 46.66667 0.11767414
## 46 92.30769 47.77778 0.11729579
## 47 92.30769 48.88889 0.11454453
## 48 92.30769 50.00000 0.11186551
## 49 92.30769 51.11111 0.11137797
## 50 92.30769 52.22222 0.10981326
## 51 92.30769 53.33333 0.10832608
## 52 92.30769 54.44444 0.10780905
## 53 92.30769 55.55556 0.10735884
## 54 92.30769 56.66667 0.10709123
## 55 92.30769 57.77778 0.10650332
## 56 92.30769 58.88889 0.10177943
## 57 92.30769 60.00000 0.09705286
## 58 92.30769 61.11111 0.09205247
## 59 92.30769 62.22222 0.08581838
## 60 92.30769 63.33333 0.08362040
## 61 92.30769 64.44444 0.08304041
## 62 92.30769 65.55556 0.08294378
## 63 92.30769 66.66667 0.08291351
## 64 92.30769 67.77778 0.08234570
## 65 92.30769 68.88889 0.08106621
## 66 92.30769 70.00000 0.08022468
## 67 92.30769 71.11111 0.07993390
## 68 92.30769 72.22222 0.07962386
## 69 92.30769 73.33333 0.07881416
## 70 92.30769 74.44444 0.07774518
## 71 92.30769 75.55556 0.07724728
## 72 92.30769 76.66667 0.07710655
## 73 92.30769 77.77778 0.07621355
## 74 92.30769 78.88889 0.07450209
## 75 92.30769 80.00000 0.07305427
## 76 92.30769 81.11111 0.07231236
## 77 92.30769 82.22222 0.07206214
## 78 92.30769 83.33333 0.07185930
## 79 92.30769 84.44444 0.06950654
## 80 92.30769 85.55556 0.06688215
## 81 92.30769 86.66667 0.06607833
## 82 92.30769 87.77778 0.06337691
## 83 92.30769 88.88889 0.06014665
## 84 92.30769 90.00000 0.05918963
## 85 92.30769 91.11111 0.05879020
## 86 92.30769 92.22222 0.05788050
## 87 92.30769 93.33333 0.05689645
## 88 92.30769 94.44444 0.05274216
## 89 92.30769 95.55556 0.04838234
## 90 92.30769 96.66667 0.04762502
curva_roc<-ggroc(acu2$rocs[[10]],alpha = 1, colour = "red", linetype = 1, size = 1)+ ggtitle("Gráfico 2. Curva ROC") + labs(x="Especificidad", y="Sensibilidad")+annotate("text", x=0.60,y=0.50,label="AUC=0.95",fontface = "bold",size = 4)+
  theme(plot.title = element_text(size = 14, face = "bold"),axis.title = element_text(size=13))+annotate("pointrange",x=0.965,y=0.923,ymin = 0.916,ymax = 0.93,colour="black",size=0.5)+annotate("text",x=0.70,y=0.80, label="S:92.3% E:96.7%", fontface = "bold",size = 5)

model3_asess <- clmm2(score~age+gender+bmi+prior_incomplete_colonoscopy+schedule+first_operator_type+boston+pain+hernia+time_entrance+ambulatory_hospitalised+consumption_propofol_mg, random=institution,data=db_imp, Hess=T )
summary(model2_asess)
## Cumulative Link Mixed Model fitted with the Laplace approximation
## 
## Call:
## clmm2(location = score ~ age + gender + bmi + digestive_surgery + 
##     prior_incomplete_colonoscopy + hernia + ambulatory_hospitalised + 
##     schedule + time_entrance + first_operator_type + boston + 
##     pain + consumption_propofol_mg, random = institution, data = db_imp, 
##     Hess = T)
## 
## Random effects:
##                   Var   Std.Dev
## institution 0.8078769 0.8988197
## 
## Location coefficients:
##                                      Estimate Std. Error z value Pr(>|z|)  
## age                                   0.0109   0.0033     3.3467 0.00081767
## gendermujer                           0.5778   0.0878     6.5798 4.7113e-11
## bmi                                  -0.0187   0.0087    -2.1527 0.03134417
## digestive_surgerysi                   0.0858   0.0889     0.9651 0.33451803
## prior_incomplete_colonoscopysi        0.5220   0.2428     2.1503 0.03153205
## herniasi                              0.5344   0.2705     1.9757 0.04819394
## ambulatory_hospitalisedhospitalizado -0.1412   0.4365    -0.3234 0.74639537
## scheduletarde                         0.3325   0.0979     3.3968 0.00068190
## time_entrance                         0.0468   0.0121     3.8642 0.00011143
## first_operator_typeexperto           -0.6498   0.1470    -4.4208 9.8333e-06
## bostonExcelente                      -0.3836   0.0977    -3.9267 8.6114e-05
## painmoderado                          0.6755   0.1462     4.6219 3.8025e-06
## painsevero                            0.3145   0.7012     0.4485 0.65380293
## consumption_propofol_mg               0.0029   0.0006     4.6966 2.6454e-06
## 
## No scale coefficients
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2  0.3425   0.4387     0.7807
## 2|3  1.9744   0.4408     4.4790
## 3|4  2.9981   0.4434     6.7611
## 4|5  4.6699   0.4546    10.2719
## 
## log-likelihood: -2632.693 
## AIC: 5303.386 
## Condition number of Hessian: 2910172.59
exp(coef(model3_asess))
##                                  1|2                                  2|3 
##                            1.4113203                            7.2136544 
##                                  3|4                                  4|5 
##                           20.0728927                          106.7844510 
##                                  age                          gendermujer 
##                            1.0113987                            1.8153043 
##                                  bmi       prior_incomplete_colonoscopysi 
##                            0.9821663                            1.7001176 
##                        scheduletarde           first_operator_typeexperto 
##                            1.3829383                            0.5179662 
##                      bostonExcelente                         painmoderado 
##                            0.6819601                            1.9810353 
##                           painsevero                             herniasi 
##                            1.3566081                            1.7277778 
##                        time_entrance ambulatory_hospitalisedhospitalizado 
##                            1.0481606                            0.8638704 
##              consumption_propofol_mg                                      
##                            1.0028558                            2.4559562
model_predict3 <- predict(model3_asess, newdata=datatest, type="probability")

auc3 <- multiclass.roc(datatest$score, model_predict3,direction=">", levels=levels(datatest$score),plot=TRUE, print.thres="best", print.auc=T)#0.95 averange

auc3$auc# no hay mcuha diferencia
## Multi-class area under the curve: 0.941

Continuamos con el modelo 2

ggpredictions <-data.frame(ggpredict(model2,terms="gender", type="fe"))

ggpredictions$x = factor(ggpredictions$x)
levels(ggpredictions$x) = c("hombre", "mujer")
colnames(ggpredictions)[c(1, 6)] =c("genero", "score")

graf1<-ggplot(ggpredictions, aes(x = score, y = predicted, group=genero)) +
  geom_smooth(aes(colour = genero),span=0.9)+
  theme_minimal()+
  ggtitle("Predicciones del modelo")

predictions2<-data.frame(ggpredict(model2,terms="pain", type="fe"))

predictions2$x = factor(predictions2$x)
levels(predictions2$x) = c("leve", "moderado","severo")
colnames(predictions2)[c(1,6)] =c("dolor", "score")

graf2<-ggplot(predictions2, aes(x = score, y = predicted, group=dolor))+geom_smooth(aes(colour = dolor),span=0.9)+theme_minimal()

predictions3<-data.frame(ggpredict(model2,terms="schedule", type="fe"))

predictions3$x = factor(predictions3$x)
levels(predictions3$x) = c("mañana", "tarde")
colnames(predictions3)[c(1, 6)] =c("jornada", "score")

graf3<-ggplot(predictions3, aes(x = score, y = predicted, group=jornada))+geom_smooth(aes(colour = jornada),span=0.9)+theme_minimal()

predictions4<-data.frame(ggpredict(model2,terms="prior_incomplete_colonoscopy", type="fe"))

predictions4$x = factor(predictions4$x)
levels(predictions4$x) = c("no", "si")
colnames(predictions4)[c(1, 6)] =c("VCCincompleta", "score")


graf4<-ggplot(predictions4, aes(x = score, y = predicted, group=VCCincompleta))+geom_smooth(aes(colour = VCCincompleta),span=0.9)+theme_minimal()+labs(color="VCC previa incompleta")


plot_grid(graf1,graf4,graf3,graf2)

7 Resultados

mylabels2<-list(age="Edad",gendermujer="Genero[mujer]",bmi="IMC",digestive_surgerysi="Cirugia abdominal",herniasi="Antecedentes de hernia",prior_incomplete_colonoscopysi="Colonoscopia previa incompleta",ambulatory_hospitalisedhospitalizado="Hospitalizado",first_operator_typeexperto="1°operador experto", bostonExcelente="Boston[excelente]",scheduletarde="VCC vespertina",time_entrance="Tiempo de entrada(min)",painmoderado="Dolor[moderado]",painsevero="Dolor[severo]",consumption_propofol_mg="Consumo de propofol(mg)")


?tab_model
tabla_modelo<-tab_model(model2,rm.terms=c("1|2","2|3","3|4","4|5"),title = "Tabla 4. Resultados", auto.label = T,string.pred = "Predictores", string.ci = "IC 95%",dv.labels = "Score ABCD",pred.labels =mylabels2)
tabla_modelo
Tabla 4. Resultados
  Score ABCD
Predictores Odds Ratios IC 95% p
Edad 1.01 1.00 – 1.02 0.001
Genero[mujer] 1.78 1.50 – 2.12 <0.001
IMC 0.98 0.96 – 1.00 0.031
Cirugia abdominal 1.09 0.92 – 1.30 0.335
Colonoscopia previa
incompleta
1.69 1.05 – 2.71 0.032
Antecedentes de hernia 1.71 1.00 – 2.90 0.048
Hospitalizado 0.87 0.37 – 2.04 0.746
VCC vespertina 1.39 1.15 – 1.69 0.001
Tiempo de entrada(min) 1.05 1.02 – 1.07 <0.001
1°operador experto 0.52 0.39 – 0.70 <0.001
Boston[excelente] 0.68 0.56 – 0.83 <0.001
Dolor[moderado] 1.97 1.48 – 2.62 <0.001
Dolor[severo] 1.37 0.35 – 5.41 0.654
Consumo de propofol(mg) 1.00 1.00 – 1.00 <0.001
Random Effects
σ2 3.29
τ00 institution 0.81
ICC 0.20
N institution 15
Observations 2111
Marginal R2 / Conditional R2 0.095 / 0.273
tbl_regression(model2, exponentiate=T)
Characteristic OR1 95% CI1 p-value
age 1.01 1.00, 1.02 <0.001
gender
    hombre
    mujer 1.78 1.50, 2.12 <0.001
bmi 0.98 0.96, 1.00 0.031
digestive_surgery
    no
    si 1.09 0.92, 1.30 0.3
prior_incomplete_colonoscopy
    no
    si 1.69 1.05, 2.71 0.032
hernia
    no
    si 1.71 1.00, 2.90 0.048
ambulatory_hospitalised
    ambulatorio
    hospitalizado 0.87 0.37, 2.04 0.7
schedule
    mañana
    tarde 1.39 1.15, 1.69 <0.001
time_entrance 1.05 1.02, 1.07 <0.001
first_operator_type
    junior
    experto 0.52 0.39, 0.70 <0.001
boston
    Bueno
    Excelente 0.68 0.56, 0.83 <0.001
pain
    leve
    moderado 1.97 1.48, 2.62 <0.001
    severo 1.37 0.35, 5.41 0.7
consumption_propofol_mg 1.00 1.00, 1.00 <0.001
1 OR = Odds Ratio, CI = Confidence Interval
summary(model2)

Cumulative Link Mixed Model fitted with the Laplace approximation

formula: score ~ age + gender + bmi + digestive_surgery + prior_incomplete_colonoscopy +
hernia + ambulatory_hospitalised + schedule + time_entrance +
first_operator_type + boston + pain + consumption_propofol_mg +
(1 | institution) data: db_imp

link threshold nobs logLik AIC niter max.grad cond.H logit flexible 2111 -2632.69 5303.39 2293(6891) 1.31e-01 2.9e+06

Random effects: Groups Name Variance Std.Dev. institution (Intercept) 0.8078 0.8988
Number of groups: institution 15

Coefficients: Estimate Std. Error z value Pr(>|z|)
age 0.0109266 0.0032651 3.346 0.000819 gendermujer 0.5777703 0.0878123 6.580 4.72e-11 bmi -0.0187299 0.0087018 -2.152 0.031365 *
digestive_surgerysi 0.0858313 0.0889481 0.965 0.334565
prior_incomplete_colonoscopysi 0.5220291 0.2427858 2.150 0.031542 *
herniasi 0.5344718 0.2705275 1.976 0.048193 *
ambulatory_hospitalisedhospitalizado -0.1411367 0.4366008 -0.323 0.746496
scheduletarde 0.3324472 0.0978753 3.397 0.000682 time_entrance 0.0468492 0.0121241 3.864 0.000111 first_operator_typeexperto -0.6498313 0.1470056 -4.420 9.85e-06 bostonExcelente -0.3835957 0.0976899 -3.927 8.61e-05 painmoderado 0.6755501 0.1461668 4.622 3.80e-06 painsevero 0.3143450 0.7013534 0.448 0.654011
consumption_propofol_mg 0.0028905 0.0006155 4.696 2.65e-06
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1

Threshold coefficients: Estimate Std. Error z value 1|2 0.3425 0.4390 0.780 2|3 1.9744 0.4411 4.476 3|4 2.9981 0.4437 6.757 4|5 4.6699 0.4549 10.266

exp(coef(model2))
                             1|2                                  2|3 
                       1.4084536                            7.2021820 
                             3|4                                  4|5 
                      20.0470553                          106.6898705 
                             age                          gendermujer 
                       1.0109865                            1.7820606 
                             bmi                  digestive_surgerysi 
                       0.9814444                            1.0896225 
  prior_incomplete_colonoscopysi                             herniasi 
                       1.6854441                            1.7065466 

ambulatory_hospitalisedhospitalizado scheduletarde 0.8683706 1.3943762 time_entrance first_operator_typeexperto 1.0479640 0.5221339 bostonExcelente painmoderado 0.6814069 1.9651138 painsevero consumption_propofol_mg 1.3693621 1.0028947

or<-odds_plot(model2,title = "Gráfico 1. Estimadores modelo de regresion ordinal",
              subtitle = "Factores asociados a VCC dificultosa",
              error_bar_width = 1,
              point_size = 2,
              point_col = "red",
              error_bar_colour = "blue", x_label = "",h_line_color = "black")
?odds_plot
or$odds_data<-or$odds_data[-c(1,2,3),]
or$odds_plot$data<-or$odds_plot$data[-c(1,2,3),]

or_plot<-or$odds_plot+
  scale_x_discrete(expand=c(0.15,0.15),labels=c("prior_incomplete_colonoscopysi"="Colonoscopia previa incompleta",
"painmoderado" = "Dolor moderado","painsevero"="Dolor severo",
"gendermujer"="Mujer",
"herniasi"="Hernia","scheduletarde"="VCC vespertina","digestive_surgerysi"="Cirugia digestiva","time_entrance"="Tiempo de entrada","age"="Edad","consumption_propofol_mg"="Consumo de propofol(mg)","bmi"="IMC","ambulatory_hospitalisedhospitalizado"="Hospitalizado","bostonExcelente"="Boston Excelente","first_operator_typeexperto"="1°operador experto"))+theme(axis.text = element_text(size=14,face="bold", colour="black"),plot.title = element_text(size = 14, face = "bold"), plot.subtitle =element_text(size = 14), axis.title =element_text(size=12))